论文标题
通过将动力学约束施加路径重新加权来优化力场优化
Force field optimization by imposing kinetic constraints with path reweighting
论文作者
论文摘要
可以优化用于复杂系统分子动力学模拟中的经验力场,以重现实验确定的结构和热力学特性。相比之下,由于缺乏有效的方法,几乎从未将有关亚稳态状态之间互连速率的实验知识纳入力场。在这里,我们基于使用轨迹的统计力学,基于动态可观察物(例如速率常数和基础力场参数)之间的关系引入这样的框架。考虑到以不完善的力场参数产生的分子轨迹的先前集合,该方法允许这些参数的最佳适应性,从而遵守相等预测和实验速率常数的施加约束。为此,该方法将连续路径集合最大口径方法与随机动力学的路径重新加权方法相结合。当找到多个溶液时,该方法会根据最大熵原理的要求自动选择与整个路径集合的最小扰动相对应的组合。为了显示该方法的有效性,我们说明了正在进行罕见事件动态的简单测试系统上的方法。除了简单的2D电势之外,我们探索代表分子异构化反应以及蛋白质 - 配体解框的粒子模型。除最佳交互参数外,方法论还可以对模型的哪些部分对动力学最敏感。我们讨论了该方法的一般性和广泛的含义。
Empirical force fields employed in molecular dynamics simulations of complex systems can be optimised to reproduce experimentally determined structural and thermodynamic properties. In contrast, experimental knowledge about the rates of interconversion between metastable states in such systems, is hardly ever incorporated in a force field, due to a lack of an efficient approach. Here, we introduce such a framework, based on the relationship between dynamical observables such as rate constants, and the underlying force field parameters, using the statistical mechanics of trajectories. Given a prior ensemble of molecular trajectories produced with imperfect force field parameters, the approach allows the optimal adaption of these parameters, such that the imposed constraint of equal predicted and experimental rate constant is obeyed. To do so, the method combines the continuum path ensemble Maximum Caliber approach with path reweighting methods for stochastic dynamics. When multiple solutions are found, the method selects automatically the combination that corresponds to the smallest perturbation of the entire path ensemble, as required by the Maximum Entropy principle. To show the validity of the approach we illustrate the method on simple test systems undergoing rare event dynamics. Next to simple 2D potentials we explore particle models representing molecular isomerisation reactions as well as protein-ligand unbinding. Besides optimal interaction parameters the methodology gives physical insight into what parts of the model are most sensitive to the kinetics. We discuss the generality and broad implications of the methodology.