论文标题
在流量路由的路径添加的属性上
On the properties of path additions for traffic routing
论文作者
论文摘要
在本文中,我们研究了添加路径对具有优化流量路由的运输网络的影响。特别是,我们研究了总旅行时间的行为,并考虑了自私的路由范式,例如用户平衡(UE)路由以及合作范式,例如经典的多商品(MC)网络流动和系统最佳(SO)路由。我们提供了一个正式的框架,用于通过迭代路径添加设计运输网络,引入了跨越树和跳路图的概念。使用此形式化,我们证明了运输网络设计的目标函数的多个属性。由于潜在的路由问题是NP-HARD,因此我们研究了提供近似算法设计保证的属性。首先,尽管Braess的悖论表明,对于自我利益路由(UE),总旅行时间并不是单调的非刺激性,但我们证明,相反,单调性具有合作路由(MC等)。该结果具有重要的含义,即合作代理人可以充分利用冗余基础设施。其次,我们通过反例证证明,直观的语句“向传输网络添加路径总是给用户带来更大或同等的好处,而不是将其添加到该网络的超集中'是错误的。换句话说,我们证明,对于所有研究的路由公式,相对于路径添加而言,总旅行时间不是超模型。尽管这种违反直觉结果为算法设计带来了硬度属性,但我们提供了特定的实例,而相反,超模型的属性则具有。我们关于相对于路径增加的总旅行时间的单调性和超模样的研究提供了正式的证据和场景,构成了运输网络设计师的重要见解。
In this paper we investigate the impact of path additions to transport networks with optimised traffic routing. In particular, we study the behaviour of total travel time, and consider both self-interested routing paradigms, such as User Equilibrium (UE) routing, as well as cooperative paradigms, such as classic Multi-Commodity (MC) network flow and System Optimal (SO) routing. We provide a formal framework for designing transport networks through iterative path additions, introducing the concepts of trip spanning tree and trip path graph. Using this formalisation, we prove multiple properties of the objective function for transport network design. Since the underlying routing problem is NP-Hard, we investigate properties that provide guarantees in approximate algorithm design. Firstly, while Braess' paradox has shown that total travel time is not monotonic non-increasing with respect to path additions under self-interested routing (UE), we prove that, instead, monotonicity holds for cooperative routing (MC and SO). This result has the important implication that cooperative agents make the best use of redundant infrastructure. Secondly, we prove via a counterexample that the intuitive statement `adding a path to a transport network always grants greater or equal benefit to users than adding it to a superset of that network' is false. In other words we prove that, for all the routing formulations studied, total travel time is not supermodular with respect to path additions. While this counter-intuitive result yields a hardness property for algorithm design, we provide particular instances where, instead, the property of supermodularity holds. Our study on monotonicity and supermodularity of total travel time with respect to path additions provides formal proofs and scenarios that constitute important insights for transport network designers.