论文标题
Polyak-Ruppert平均线性随机近似的有限时间高概率界限
Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation
论文作者
论文摘要
本文提供了具有固定步骤大小的线性随机近似(LSA)算法的有限时间分析,这是统计和机器学习的核心方法。 LSA用于计算A $ D $维线性系统$ \ bar {\ MathBf {a}}θ= \ bar {\ Mathbf {b}} $的近似解决方案。无偏见的观察$ \ {(\ MathBf {a}(z_n),\ Mathbf {b}(z_n))\} _ {n \ in \ Mathbb {n}} $。我们在这里考虑$ \ {z_n \} _ {n \ in \ mathbb {n}} $是i.i.d.序列或统一的几何千古马尔可夫链。我们为LSA及其Polyak-ruppert-Averaged版本定义的迭代元素提供了$ p $ -th时刻和高概率偏差范围。我们对平均LSA迭代的有限实例依赖性界限在某种意义上与局部渐近minimax限制相吻合的意义上是锐利的。此外,我们边界的其余条款承认,对混合时间$ t _ {\ operatotorName {mix}} $的混合时间和噪声变量规范。我们强调的是,我们的结果需要SA步骤大小仅在问题维度$ d $的对数中扩展。
This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a $d$-dimensional linear system $\bar{\mathbf{A}} θ= \bar{\mathbf{b}}$ for which $(\bar{\mathbf{A}}, \bar{\mathbf{b}})$ can only be estimated by (asymptotically) unbiased observations $\{(\mathbf{A}(Z_n),\mathbf{b}(Z_n))\}_{n \in \mathbb{N}}$. We consider here the case where $\{Z_n\}_{n \in \mathbb{N}}$ is an i.i.d. sequence or a uniformly geometrically ergodic Markov chain. We derive $p$-th moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak-Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time $t_{\operatorname{mix}}$ of the underlying chain and the norm of the noise variables. We emphasize that our result requires the SA step size to scale only with logarithm of the problem dimension $d$.