论文标题

部分可观测时空混沌系统的无模型预测

Stability of neutron stars in Horndeski theories with Gauss-Bonnet couplings

论文作者

Minamitsuji, Masato, Tsujikawa, Shinji

论文摘要

在包含标量耦合的Horndeski理论中,与高斯曲率(GB)曲率不变性$ r _ {\ rm Gb}^2 $,我们研究了中性星(NS)溶液的存在和线性稳定性在静态和球形的背景上。对于形式的标量gb耦合,$αξ(ϕ)r _ {\ rm gb}^2 $,其中$ξ$是标量场$ ϕ $的函数,存在线性稳定的星星,具有非平量表的线性稳定性,而无需不稳定性,而无需不稳定性,则无法将上限限制在不断变化的coupl counts $ $ $ $ | | | | | | | | | | | | | | | | | | |为了实现线性(或膨胀)GB耦合$α_ {\ rm gb} ϕr _ {\ rm gb}^2 $带有典型状态核方程式的最大NSS,我们获得了理论的上限上限$ \ sqrt {|α_ {| rm rm g}^0。这比观察到来自含有NSS的二进制的重力波获得的重力比获得的要紧。我们还结合了立方顺序的标量衍生物相互作用,除标量-GB耦合外,与RICCI标量与RICCI标量偶联以外的四分之一衍生物耦合,并表明NS解决方案具有非平凡标量型,使所有线性稳定性都满足所有线性稳定性条件,并且在某些coupling coupling conpling conpling conpling and ranges中都存在所有线性稳定性条件。在从kaluza-klein还原获得的正则四维爱因斯坦GB重力中,并适当重新恢复了GB耦合常数,我们发现该理论中的NSS遭受了强烈的耦合问题以及持续性关系的laplacian不稳定。我们还在Power-Law $ F(r _ {\ rm gb}^2)$模型中研究了具有非平凡标量曲线的NS解决方案,并证明它们在恒星的内部是病态的,并且被幽灵不稳定性以及恒星外部的渐近强耦合问题而受到困扰。

In Horndeski theories containing a scalar coupling with the Gauss-Bonnet (GB) curvature invariant $R_{\rm GB}^2$, we study the existence and linear stability of neutron star (NS) solutions on a static and spherically symmetric background. For a scalar-GB coupling of the form $αξ(ϕ) R_{\rm GB}^2$, where $ξ$ is a function of the scalar field $ϕ$, the existence of linearly stable stars with a nontrivial scalar profile without instabilities puts an upper bound on the strength of the dimensionless coupling constant $|α|$. To realize maximum masses of NSs for a linear (or dilatonic) GB coupling $α_{\rm GB}ϕR_{\rm GB}^2$ with typical nuclear equations of state, we obtain the theoretical upper limit $\sqrt{|α_{\rm GB}|}<0.7~{\rm km}$. This is tighter than those obtained by the observations of gravitational waves emitted from binaries containing NSs. We also incorporate cubic-order scalar derivative interactions, quartic derivative couplings with nonminimal couplings to a Ricci scalar besides the scalar-GB coupling and show that NS solutions with a nontrivial scalar profile satisfying all the linear stability conditions are present for certain ranges of the coupling constants. In regularized 4-dimensional Einstein-GB gravity obtained from a Kaluza-Klein reduction with an appropriate rescaling of the GB coupling constant, we find that NSs in this theory suffer from a strong coupling problem as well as Laplacian instability of even-parity perturbations. We also study NS solutions with a nontrivial scalar profile in power-law $F(R_{\rm GB}^2)$ models, and show that they are pathological in the interior of stars and plagued by ghost instability together with the asymptotic strong coupling problem in the exterior of stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源