论文标题

改进的下限以最小化的下函数

Improved Lower Bounds for Submodular Function Minimization

论文作者

Chakrabarty, Deeparnab, Graur, Andrei, Jiang, Haotian, Sidford, Aaron

论文摘要

我们提供了一种通用技术,用于构建子模函数的家族,以获得下界功能最小化(SFM)的下限。应用此技术,我们证明了$ n $元素的地面集的任何确定性SFM算法都需要至少$ω(n \ log n)$ QUERIES $ QUERIES对评估Oracle。这是SFM的第一个超级线性查询复杂性下限,并且在[Graur等人,ITCS 2020]给出的先前最佳下限$ 2N $中改善。使用我们的构造,我们还证明了任何(可能是随机的)并行SFM算法,这些算法最多可以弥补$ \ Mathsf {poly}(n)$ queries $ queries $ queries每回合,都需要至少$ω(n / \ log n)$ rounds,以最大程度地减少子函数。由于[Chakrabarty等人,focs 2021],$ \tildeΩ(n^{1/3})$ roughs的先前最佳下限进行了改善,并解决了由于最近在[Jiang,Soda,Soda 20211]中,由于最近在[Jiang,Soda,Soda 2021]中,查询效率SFM的并行复杂性达到了对数因素的平行复杂性。

We provide a generic technique for constructing families of submodular functions to obtain lower bounds for submodular function minimization (SFM). Applying this technique, we prove that any deterministic SFM algorithm on a ground set of $n$ elements requires at least $Ω(n \log n)$ queries to an evaluation oracle. This is the first super-linear query complexity lower bound for SFM and improves upon the previous best lower bound of $2n$ given by [Graur et al., ITCS 2020]. Using our construction, we also prove that any (possibly randomized) parallel SFM algorithm, which can make up to $\mathsf{poly}(n)$ queries per round, requires at least $Ω(n / \log n)$ rounds to minimize a submodular function. This improves upon the previous best lower bound of $\tildeΩ(n^{1/3})$ rounds due to [Chakrabarty et al., FOCS 2021], and settles the parallel complexity of query-efficient SFM up to logarithmic factors due to a recent advance in [Jiang, SODA 2021].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源