论文标题

重新思考视觉识别的持续同源性

Rethinking Persistent Homology for Visual Recognition

论文作者

Khramtsova, Ekaterina, Zuccon, Guido, Wang, Xi, Baktashmotlagh, Mahsa

论文摘要

图像的持续性拓扑特性是一个附加描述符,提供了传统神经网络可能无法发现的见解。该领域的现有研究主要侧重于有效地将数据的拓扑特性整合到学习过程中,以增强性能。但是,没有现有的研究来证明引入拓扑特性可以提高或损害性能的所有可能场景。本文对拓扑特性在各种培训方案中的图像分类有效性进行了详细分析,定义为:训练样本的数量,训练数据的复杂性以及骨干网络的复杂性。我们确定从拓扑功能中受益最大的方案,例如,在小数据集上培训简单的网络。此外,我们讨论了数据集拓扑一致性的问题,该问题是使用拓扑特征进行分类的主要瓶颈之一。我们进一步证明了拓扑不一致如何损害某些情况的性能。

Persistent topological properties of an image serve as an additional descriptor providing an insight that might not be discovered by traditional neural networks. The existing research in this area focuses primarily on efficiently integrating topological properties of the data in the learning process in order to enhance the performance. However, there is no existing study to demonstrate all possible scenarios where introducing topological properties can boost or harm the performance. This paper performs a detailed analysis of the effectiveness of topological properties for image classification in various training scenarios, defined by: the number of training samples, the complexity of the training data and the complexity of the backbone network. We identify the scenarios that benefit the most from topological features, e.g., training simple networks on small datasets. Additionally, we discuss the problem of topological consistency of the datasets which is one of the major bottlenecks for using topological features for classification. We further demonstrate how the topological inconsistency can harm the performance for certain scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源