论文标题

POSET的诱导饱和问题

The induced saturation problem for posets

论文作者

Freschi, Andrea, Piga, Simón, Sharifzadeh, Maryam, Treglown, Andrew

论文摘要

For a fixed poset $P$, a family $\mathcal F$ of subsets of $[n]$ is induced $P$-saturated if $\mathcal F$ does not contain an induced copy of $P$, but for every subset $S$ of $[n]$ such that $ S\not \in \mathcal F$, $P$ is an induced subposet of $\mathcal F \cup \ {s \} $。 $ \ text {sat}^*(n,p)$表示最小的此类家庭$ \ MATHCAL F $的大小。 Keszegh,Lemons,Martin,Pálvölgyi和Patkós[Combinatorial理论A系列A,2021年]证明,此参数有行为的二分法:给定任何poset $ p $,$ \ text} n $。在本文中,我们改进了这个一般结果,表明$ \ text {sat}^*(n,p)= o(1)$或$ \ text {sat}^*(n,p)\ geq \ geq \ min \ {2 \ sqrt {n},n/2+1+1 \} $。我们的证明利用了digraphs的Turán型结果。 奇怪的是,我们的结果是否基本上是最好的。一方面,伊万的猜想指出,对于所谓的钻石poset $ \钻石$,我们有$ \ text {sat}^*(n,\ diamond)=θ(\ sqrt {n})$;因此,如果正确,则该猜想意味着我们的结果紧密到乘法常数。另一方面,keszegh,Lemons,Martin,Pálvölgyi和Patkós的猜想指出,给出了任何poset $ p $,即$ \ text {sat}^*(n,p)= o(n,p)= o(1)$或$。我们证明,对于某些类别的POSETS $ P $,后者的猜想是正确的。

For a fixed poset $P$, a family $\mathcal F$ of subsets of $[n]$ is induced $P$-saturated if $\mathcal F$ does not contain an induced copy of $P$, but for every subset $S$ of $[n]$ such that $ S\not \in \mathcal F$, $P$ is an induced subposet of $\mathcal F \cup \{S\}$. The size of the smallest such family $\mathcal F$ is denoted by $\text{sat}^* (n,P)$. Keszegh, Lemons, Martin, Pálvölgyi and Patkós [Journal of Combinatorial Theory Series A, 2021] proved that there is a dichotomy of behaviour for this parameter: given any poset $P$, either $\text{sat}^* (n,P)=O(1)$ or $\text{sat}^* (n,P)\geq \log _2 n$. In this paper we improve this general result showing that either $\text{sat}^* (n,P)=O(1)$ or $\text{sat}^* (n,P) \geq \min\{ 2 \sqrt{n}, n/2+1\}$. Our proof makes use of a Turán-type result for digraphs. Curiously, it remains open as to whether our result is essentially best possible or not. On the one hand, a conjecture of Ivan states that for the so-called diamond poset $\Diamond$ we have $\text{sat}^* (n,\Diamond)=Θ(\sqrt{n})$; so if true this conjecture implies our result is tight up to a multiplicative constant. On the other hand, a conjecture of Keszegh, Lemons, Martin, Pálvölgyi and Patkós states that given any poset $P$, either $\text{sat}^* (n,P)=O(1)$ or $\text{sat}^* (n,P)\geq n+1$. We prove that this latter conjecture is true for a certain class of posets $P$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源