论文标题
使用线性深度量子电路计算电子相关能
Computing Electronic Correlation Energies using Linear Depth Quantum Circuits
论文作者
论文摘要
分子能量的有效计算是量子计算用于量子化学的令人兴奋的应用,但是当前的噪声中间尺度量子(NISQ)设备只能执行浅循环,从而限制了现有的变异量子算法,这限制了需要深层纠缠的量子电路,以捕获相关的量子,以捕获相关的小分子。在这里,我们演示了一种跨NISQ友好的算法,该算法使用多个Qubits数量的多个浅层电路生成一组平均场hartree-fock(HF)Ansatzes,以通过扰动理论到第二顺序估算Qubits数量的深度线性。我们在几个小分子上测试了算法,包括经典的模拟,包括噪声模型和云量子处理器上,表明它不仅可以再现平衡的分子能,而且还捕获了较长键距离的扰动电子相关效应。随着量子处理器的保真度继续改善我们的算法,与需要高阶多项式回路深度的其他方法相比,我们的算法可以研究较大的分子。
Efficient computation of molecular energies is an exciting application of quantum computing for quantum chemistry, but current noisy intermediate-scale quantum (NISQ) devices can only execute shallow circuits, limiting existing variational quantum algorithms, which require deep entangling quantum circuit ansatzes to capture correlations, to small molecules. Here we demonstrate a variational NISQ-friendly algorithm that generates a set of mean-field Hartree-Fock (HF) ansatzes using multiple shallow circuits with depth linear in the number of qubits to estimate electronic correlation energies via perturbation theory up to the second order. We tested the algorithm on several small molecules, both with classical simulations including noise models and on cloud quantum processors, showing that it not only reproduces the equilibrium molecular energies but it also captures the perturbative electronic correlation effects at longer bond distances. As fidelities of quantum processors continue to improve our algorithm will enable the study of larger molecules compared to other approaches requiring higher-order polynomial circuit depth.