论文标题

基于学习的基于学习的隔离森林(ALIF):增强决策支持系统中的异常检测

Active Learning-based Isolation Forest (ALIF): Enhancing Anomaly Detection in Decision Support Systems

论文作者

Marcelli, Elisa, Barbariol, Tommaso, Susto, Gian Antonio

论文摘要

在许多应用程序中,检测异常行为是新兴的需求,尤其是在安全性和可靠性是关键方面的情况下。尽管对异常的定义严格取决于域框架,但它通常是不切实际的或太耗时的,无法获得完全标记的数据集。使用无监督模型来克服缺乏标签的模型通常无法捕获特定的特定异常情况,因为它们依赖于异常值的一般定义。本文提出了一种新的基于积极学习的方法Alif,以通过减少所需标签的数量并将检测器调整为用户提供的异常的定义来解决此问题。在存在决策支持系统(DSS)的情况下,提出的方法特别有吸引力,这种情况在现实世界中越来越流行。尽管常见的DSS嵌入了异常检测功能取决于无监督的模型,但它们没有办法提高性能:Alif能够通过在共同操作期间利用用户反馈来增强DSS的功能。 Alif是对流行的隔离林的轻巧修改,在许多真实的异常检测数据集中,相对于其他最新算法证明了相对于其他最新算法的出色性能。

The detection of anomalous behaviours is an emerging need in many applications, particularly in contexts where security and reliability are critical aspects. While the definition of anomaly strictly depends on the domain framework, it is often impractical or too time consuming to obtain a fully labelled dataset. The use of unsupervised models to overcome the lack of labels often fails to catch domain specific anomalies as they rely on general definitions of outlier. This paper suggests a new active learning based approach, ALIF, to solve this problem by reducing the number of required labels and tuning the detector towards the definition of anomaly provided by the user. The proposed approach is particularly appealing in the presence of a Decision Support System (DSS), a case that is increasingly popular in real-world scenarios. While it is common that DSS embedded with anomaly detection capabilities rely on unsupervised models, they don't have a way to improve their performance: ALIF is able to enhance the capabilities of DSS by exploiting the user feedback during common operations. ALIF is a lightweight modification of the popular Isolation Forest that proved superior performances with respect to other state-of-art algorithms in a multitude of real anomaly detection datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源