论文标题

通过机器学习预测星体相关分子的结合能

Predicting binding energies of astrochemically relevant molecules via machine learning

论文作者

Villadsen, Torben, Ligterink, Niels F. W., Andersen, Mie

论文摘要

分子在太空中的行为在很大程度上受到冻结或升华的位置。因此,分子结合能是许多天文学研究的重要参数。该参数通常由耗时的实验,计算昂贵的量子化学计算或廉价但不准确的线性添加方法确定。在这项工作中,我们提出了一种基于机器学习的新方法,用于预测准确但计算上便宜的结合能。基于高斯过程回归的机器学习模型是在文献中提出的实验室实验中收集的分子的结合能数据库中创建和训练的。数据库中的分子按其特征进行分类,例如单层或多层覆盖范围,结合表面,官能团,价电子以及H键的受体和供体。该模型的性能通过五倍和一零分子的交叉验证进行评估。预测通常是准确的,预测和文献结合能量的差异小于$ \ pm $ 20 \%。经过验证的模型用于预测最近在星际培养基中检测到的二十一个分子的结合能,但尚不清楚结合能值。一个简化的模型用于可视化这些分子的雪线位于原球门磁盘中。这项工作表明,可以使用机器学习来准确,快速预测分子的结合能。机器学习补充了当前的实验室实验和量子化学计算研究。预测的结合能将在天体化学和行星形成环境的建模中找到使用。

The behaviour of molecules in space is to a large extent governed by where they freeze out or sublimate. The molecular binding energy is thus an important parameter for many astrochemical studies. This parameter is usually determined with time-consuming experiments, computationally expensive quantum chemical calculations, or the inexpensive, but inaccurate, linear addition method. In this work we propose a new method based on machine learning for predicting binding energies that is accurate, yet computationally inexpensive. A machine learning model based on Gaussian Process Regression is created and trained on a database of binding energies of molecules collected from laboratory experiments presented in the literature. The molecules in the database are categorized by their features, such as mono- or multilayer coverage, binding surface, functional groups, valence electrons, and H-bond acceptors and donors. The performance of the model is assessed with five-fold and leave-one-molecule-out cross validation. Predictions are generally accurate, with differences between predicted and literature binding energies values of less than $\pm$20\%. The validated model is used to predict the binding energies of twenty one molecules that have recently been detected in the interstellar medium, but for which binding energy values are not known. A simplified model is used to visualize where the snowlines of these molecules would be located in a protoplanetary disk. This work demonstrates that machine learning can be employed to accurately and rapidly predict binding energies of molecules. Machine learning complements current laboratory experiments and quantum chemical computational studies. The predicted binding energies will find use in the modelling of astrochemical and planet-forming environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源