论文标题

随机流中的最大重量B匹配

Maximum Weight b-Matchings in Random-Order Streams

论文作者

Huang, Chien-Chung, Sellier, François

论文摘要

我们考虑在随机订单半流模型中的最大权重$ b $匹配问题。假设所有权重都是从$ [1,w] $绘制的小整数,我们使用$ o(\ max(| m_g |,n)\ cdot poly($ log($ dem),$ white $ white $ white $ white $ white $ y $ white $ y $ y $ white $ y $ white $ white $ whe,最佳匹配的基数。我们的结果概括了Bernstein [Bernstein,2015],该公司获得了$ 3/2 + \ Varepsilon $近似值的$ 3/2 + \ varepsilon $近似,最大的基数简单匹配。当$ w $很小时,我们的结果也会改善Gamlath等人的结果。 [Gamlath等,2019],它获得了$2-δ$近似(对于某些小常数$δ\ sim 10^{ - 17} $),最大重量简单匹配。特别是,对于加权$ b $的问题,我们的结果是第一个超过$ 2 $的结果。我们的技术取决于最初由Bernstein和Stein [Bernstein and Stein,2015]开发的Edge-Chigre受限子图的广义加权版本。这样的子图具有有限的顶点度(因此仅使用少量边缘),并且可以轻松计算。它包含$ 2 - \ frac {1} {2W} + \ varepsilon $ the最大重量匹配的近似值,可以使用经典的kőnig -egerváry的双重定理证明。

We consider the maximum weight $b$-matching problem in the random-order semi-streaming model. Assuming all weights are small integers drawn from $[1,W]$, we present a $2 - \frac{1}{2W} + \varepsilon$ approximation algorithm, using a memory of $O(\max(|M_G|, n) \cdot poly(\log(m),W,1/\varepsilon))$, where $|M_G|$ denotes the cardinality of the optimal matching. Our result generalizes that of Bernstein [Bernstein, 2015], which achieves a $3/2 + \varepsilon$ approximation for the maximum cardinality simple matching. When $W$ is small, our result also improves upon that of Gamlath et al. [Gamlath et al., 2019], which obtains a $2 - δ$ approximation (for some small constant $δ\sim 10^{-17}$) for the maximum weight simple matching. In particular, for the weighted $b$-matching problem, ours is the first result beating the approximation ratio of $2$. Our technique hinges on a generalized weighted version of edge-degree constrained subgraphs, originally developed by Bernstein and Stein [Bernstein and Stein, 2015]. Such a subgraph has bounded vertex degree (hence uses only a small number of edges), and can be easily computed. The fact that it contains a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching is proved using the classical Kőnig-Egerváry's duality theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源