论文标题
低复杂性多用户MIMO预编码设计的深度学习框架
A Deep Learning-Based Framework for Low Complexity Multi-User MIMO Precoding Design
论文作者
论文摘要
使用预编码来抑制多用户干扰是一种众所周知的技术,可以提高多源多输入多输入(MU-MIMO)系统的光谱效率,而追求高性能和低复杂性预言方法一直是过去十年中的重点。传统算法在内的算法(ZF)算法和加权的最小平方误差(WMMSE)算法未能实现复杂性和性能之间令人满意的权衡。在本文中,利用深度学习的力量,我们为MU-MIMO系统提出了一个低复杂的预编码设计框架。关键思想是将MIMO预编码问题转换为多输入单输出预编码问题,其中可以在封闭形式中获得最佳的预编码结构。定制的深神经网络旨在适合从通道到预编码矩阵的映射。此外,输入维度降低,网络修剪和恢复模块压缩的技术用于进一步提高计算效率。此外,还研究了实用MIMO正交频分复(MIMO-OFDM)系统的扩展。仿真结果表明,所提出的低复杂性预码方案的性能与具有非常低的计算复杂性的WMMSE算法相似。
Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high performance and low complexity precoding method has been the focus in the last decade. The traditional algorithms including the zero-forcing (ZF) algorithm and the weighted minimum mean square error (WMMSE) algorithm failed to achieve a satisfactory trade-off between complexity and performance. In this paper, leveraging on the power of deep learning, we propose a low-complexity precoding design framework for MU-MIMO systems. The key idea is to transform the MIMO precoding problem into the multiple-input single-output precoding problem, where the optimal precoding structure can be obtained in closed-form. A customized deep neural network is designed to fit the mapping from the channels to the precoding matrix. In addition, the technique of input dimensionality reduction, network pruning, and recovery module compression are used to further improve the computational efficiency. Furthermore, the extension to the practical MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) system is studied. Simulation results show that the proposed low-complexity precoding scheme achieves similar performance as the WMMSE algorithm with very low computational complexity.