论文标题
非线性旋转纺纱方程中的hirota双线性方法和相对论耗散溶液
Hirota Bilinear Method and Relativistic Dissipative Soliton Solutions in Nonlinear Spinor Equations
论文作者
论文摘要
引入了一个新的相对论的非线性非线性模型,用于1+1个尺寸的真实Majorana型纺纱场,量表等于Papanicolau旋转模型,该模型在一个纸倍曲底上定义了。通过使用双数字,该模型表示为双曲复合物有价值的相对论巨大的斜形型模型。通过Hirota的双线性方法,构建了该模型的确切的一个和两个耗散的孤子溶液。一个耗散溶液的前三个运动积分的计算表明,最后一个表示粒子样的非线性激发,具有相对论分散和高度非线性质量。在代数方程式系统的非平凡解决方案中,发现了相对论耗散的融合和裂变。对确切的两个溶解溶液的渐近分析证实了我们散发性相互作用的共鸣特征。
A new relativistic integrable nonlinear model for real, Majorana type spinor fields in 1+1 dimensions, gauge equivalent to Papanicolau spin model, defined on the one sheet hyperboloid is introduced. By using the double numbers, the model is represented as hyperbolic complex valued relativistic massive Thirring type model. By Hirota's bilinear method, an exact one and two dissipative soliton solutions of this model are constructed. Calculation of first three integrals of motion for one dissipaton solution shows that the last one represents a particle-like nonlinear excitation, with relativistic dispersion and highly nonlinear mass. A nontrivial solution of the system of algebraic equations, showing fusion and fission of relativistic dissipatons is found. Asymptotic analysis of exact two dissipaton solution confirms resonant character of our dissipaton interactions.