论文标题
在6DF星系调查中,从特殊速度和星系聚类相关性的局部测量生长速率的局部测量
A local measurement of the growth rate from peculiar velocities and galaxy clustering correlations in the 6dF Galaxy Survey
论文作者
论文摘要
星系奇特的速度提供了宇宙学信息不可或缺的来源,可以利用,以衡量大规模结构的生长速率,并将可能的扩展限制为一般相对论。在这项工作中,我们提出了一种通过直接奇特速度和星系聚类相关统计量的合奏来提取星系奇特速度中所包含的信息的方法,包括使用6度田间银河系调查的数据,包括红移空间扭曲的影响。我们的方法比较了这些可观察到的视觉线的自动和互相关功能多物与宇宙学模型的预测。我们发现,与拟合与特殊速度或聚类信息相比,将这两个信息源相结合时,我们的测量中的不确定性得到了改善。在将速度和密度统计范围结合在$ 27 <s <123 \,h^{ - 1} $ mpc的范围内时,我们获得了当地增长率$fσ_8= 0.358 \ pm 0.075 $的价值,以及线性红移造成参数$β= 0.298 \ pm 0.298 \ pm 0.298 \ $ $ 20.9.9.8 $ $20.9.9。我们通过将我们的测量与其他最新的局部测量结果进行比较,结论了这项工作,涵盖了不同的数据集和方法。我们发现我们的结果与文献中的结果非常吻合,并且与$λ$ CDM宇宙学完全一致。我们的方法可以很容易地缩放以分析即将进行的大型星系调查并实现宇宙学模型的准确测试。
Galaxy peculiar velocities provide an integral source of cosmological information that can be harnessed to measure the growth rate of large scale structure and constrain possible extensions to General Relativity. In this work, we present a method for extracting the information contained within galaxy peculiar velocities through an ensemble of direct peculiar velocity and galaxy clustering correlation statistics, including the effects of redshift space distortions, using data from the 6-degree Field Galaxy Survey. Our method compares the auto- and cross-correlation function multipoles of these observables, with respect to the local line of sight, with the predictions of cosmological models. We find that the uncertainty in our measurement is improved when combining these two sources of information in comparison to fitting to either peculiar velocity or clustering information separately. When combining velocity and density statistics in the range $27 < s < 123 \, h^{-1}$ Mpc we obtain a value for the local growth rate of $fσ_8 = 0.358 \pm 0.075$ and for the linear redshift distortion parameter $β= 0.298 \pm 0.065$, recovering both with $20.9$ per cent and $21.8$ per cent accuracy respectively. We conclude this work by comparing our measurement with other recent local measurements of the growth rate, spanning different datasets and methodologies. We find that our results are in broad agreement with those in the literature and are fully consistent with $Λ$CDM cosmology. Our methods can be readily scaled to analyse upcoming large galaxy surveys and achieve accurate tests of the cosmological model.