论文标题

学习痤疮检测的高质量建议

Learning High-quality Proposals for Acne Detection

论文作者

Zhang, Jianwei, Zhang, Lei, Wang, Junyou, Wei, Xin, Li, Jiaqi, Jiang, Xian, Du, Dan

论文摘要

痤疮检测对于解释性诊断和对皮肤疾病的精确治疗至关重要。任意边界和痤疮病变的尺寸较小,导致在两阶段检测中大量质量较差的建议。在本文中,我们提出了一个新型的地区建议网络的头部结构,以两种方式提高建议的质量。最初,提出了一个空间意识的双头(SADH)结构,以从两个不同的空间角度从分类和本地化进行分类和本地化的表示。拟议的SADH确保了更陡峭的分类置信度梯度,并抑制了与匹配的地面真理相交(IOU)低相交(IOU)的建议。然后,我们提出了一个归一化的Wasserstein距离预测分支,以改善提议分类分数与IOU之间的相关性。此外,为了促进痤疮检测的进一步研究,我们构建了一个名为Acnescu的新数据集,具有高分辨率成像,精确的注释和细粒度的病变类别。对AcnesCU和公共数据集Acne04进行了广泛的实验,结果表明该方法可以提高建议的质量,始终优于最先进的方法。代码和收集的数据集可在https://github.com/pingguokiller/acnedetection中找到。

Acne detection is crucial for interpretative diagnosis and precise treatment of skin disease. The arbitrary boundary and small size of acne lesions lead to a significant number of poor-quality proposals in two-stage detection. In this paper, we propose a novel head structure for Region Proposal Network to improve the proposals' quality in two ways. At first, a Spatial Aware Double Head(SADH) structure is proposed to disentangle the representation learning for classification and localization from two different spatial perspectives. The proposed SADH ensures a steeper classification confidence gradient and suppresses the proposals having low intersection-over-union(IoU) with the matched ground truth. Then, we propose a Normalized Wasserstein Distance prediction branch to improve the correlation between the proposals' classification scores and IoUs. In addition, to facilitate further research on acne detection, we construct a new dataset named AcneSCU, with high-resolution imageries, precise annotations, and fine-grained lesion categories. Extensive experiments are conducted on both AcneSCU and the public dataset ACNE04, and the results demonstrate the proposed method could improve the proposals' quality, consistently outperforming state-of-the-art approaches. Code and the collected dataset are available in https://github.com/pingguokiller/acnedetection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源