论文标题
3个manifolds,没有任何嵌入在符号的4个manifolds中
3-manifolds without any embedding in symplectic 4-manifolds
论文作者
论文摘要
我们表明,存在无限的许多封闭的3个manifolds,它们不会嵌入封闭的symbletic 4-manifolds中,从而反驳了Etnyre-min-mukherjee的猜想。为此,我们构建了无法绑定正或负定流形的L空间。这些参数使用Heegaard浮动校正项和intsanton moduli空间。
We show that there exist infinitely many closed 3-manifolds that do not embed in closed symplectic 4-manifolds, disproving a conjecture of Etnyre-Min-Mukherjee. To do this, we construct L-spaces that cannot bound positive or negative definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.