论文标题

3个manifolds,没有任何嵌入在符号的4个manifolds中

3-manifolds without any embedding in symplectic 4-manifolds

论文作者

Daemi, Aliakbar, Lidman, Tye, Eismeier, Mike Miller

论文摘要

我们表明,存在无限的许多封闭的3个manifolds,它们不会嵌入封闭的symbletic 4-manifolds中,从而反驳了Etnyre-min-mukherjee的猜想。为此,我们构建了无法绑定正或负定流形的L空间。这些参数使用Heegaard浮动校正项和intsanton moduli空间。

We show that there exist infinitely many closed 3-manifolds that do not embed in closed symplectic 4-manifolds, disproving a conjecture of Etnyre-Min-Mukherjee. To do this, we construct L-spaces that cannot bound positive or negative definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源