论文标题

部分可观测时空混沌系统的无模型预测

Mobile-IRS Assisted Next Generation UAV Communication Networks

论文作者

Shakhatreh, Hazim, Sawalmeh, Ahmad, Alenezi, Ali H, Abdel-Razeq, Sharief, Almutiry, Muhannad, Al-Fuqaha, Ala

论文摘要

先前关于智能反射表面(IRS)辅助无人机(UAV)通信的研究集中在IRS的固定位置或安装在无人机上。 IRS位于固定位置的假设将禁止移动用户最大化许多无线网络福利,例如数据速率和覆盖范围。此外,假设美国国税局(IRS)被置于无人机上是不切实际的,其原因包括美国国税局(IRS)的体重和大小以及在恶劣天气下的风速。与以前的研究不同,这项研究假设一个无人机和一个IRS安装在移动地面车辆(M-IRS)上,将部署在The Internet(IoT)6G无线网络中,以最大程度地提高平均数据速率。这种方法可以在智能城市中使用M-IRS辅助无人机系统提供无线覆盖范围。在本文中,我们制定了一个优化问题,以找到无人机的有效轨迹,M-IRS的有效途径以及用户的功率分配系数,以最大程度地提高移动地面用户的平均数据速率。由于它的棘手性,我们提出了有效的技术,可以帮助找到解决优化问题的解决方案。首先,我们表明,我们的动力分配技术在网络平均值中优于固定功率分配技术。然后,我们采用单个运动模型(随机路点模型)来表示覆盖区域内的用户运动。最后,我们提出了一种使用遗传算法(GA)为无人机找到有效轨迹的有效方法,并为M-IRS在移动过程中为移动用户提供无线连接性的有效途径。我们通过模拟证明,与静态IRS相比,我们的方法可以平均将平均数据率提高15 \%,而没有IRS系统的情况下,平均可以提高平均数据速率,平均数据率为25 \%。

Prior research on intelligent reflection surface (IRS)-assisted unmanned aerial vehicle (UAV) communications has focused on a fixed location for the IRS or mounted on a UAV. The assumption that the IRS is located at a fixed position will prohibit mobile users from maximizing many wireless network benefits, such as data rate and coverage. Furthermore, assuming that the IRS is placed on a UAV is impractical for various reasons, including the IRS's weight and size and the speed of wind in severe weather. Unlike previous studies, this study assumes a single UAV and an IRS mounted on a mobile ground vehicle (M-IRS) to be deployed in an Internet-of-Things (IoT) 6G wireless network to maximize the average data rate. Such a methodology for providing wireless coverage using an M-IRS assisted UAV system is expected in smart cities. In this paper, we formulate an optimization problem to find an efficient trajectory for the UAV, an efficient path for the M-IRS, and users' power allocation coefficients that maximize the average data rate for mobile ground users. Due to its intractability, we propose efficient techniques that can help in finding the solution to the optimization problem. First, we show that our dynamic power allocation technique outperforms the fixed power allocation technique in terms of network average sum rate. Then we employ the individual movement model (Random Waypoint Model) in order to represent the users' movements inside the coverage area. Finally, we propose an efficient approach using a Genetic Algorithm (GA) for finding an efficient trajectory for the UAV, and an efficient path for the M-IRS to provide wireless connectivity for mobile users during their movement. We demonstrate through simulations that our methodology can enhance the average data rate by 15\% on average compared with the static IRS and by 25\% on average compared without the IRS system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源