论文标题

姿势:3D人类姿势估计具有新颖的人类姿势发生器和无偏学习

PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and Unbiased Learning

论文作者

Guan, Shannan, Lu, Haiyan, Zhu, Linchao, Fang, Gengfa

论文摘要

3D姿势估计最近在计算机视觉领域中获得了重大利益。现有的3D姿势估计方法非常依赖大尺寸良好的3D姿势数据集,并且由于训练集中的3D姿势的有限多样性有限,它们在看不见的姿势上的模型概括不佳。在这项工作中,我们提出了一种新型的人类姿势发生器Posegu,该姿势生成多种姿势,只能访问少量的种子样本,同时为反事实风险最小化,以追求无偏见的评估目标。广泛的实验表明,在三个流行的基准数据集上,几乎所有正在考虑的最先进的3D人类姿势方法都超出了所有最新的3D人类姿势方法。经验分析还证明,姿势可以产生3D姿势,具有改进的数据多样性和更好的概括能力。

3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源