论文标题

ZR-ZR间原子电位的可转移性

Transferability of Zr-Zr interatomic potentials

论文作者

Nicholls, Oliver G., Frost, Dillion, Tuli, Vidur, Smutna, Jana, Wenman, Mark R., Burr, Patrick A.

论文摘要

已经开发了数十个ZR原子势(力场)来实现ZR合金的原子尺度模拟。这些可以为核燃料覆层和暴露的结构成分的反应器行为提供关键见解,但结果对潜在的选择非常敏感。我们提供了13个流行ZR电位的全面比较,并评估了它们重现ZR关键物理,机械,结构和热力学特性的能力。我们评估晶格参数,热膨胀,熔点,体积能量响应,同素相位稳定性,弹性特性和点缺陷能,并将其与实验和AB-Initio值进行比较。没有发现在所有方面上都胜过所有其他方面的潜力,但是对于这里考虑的每个指标,至少有一个潜力可提供可靠的结果。较旧的嵌入式原子方法(EAM)势趋向于每个2-3个指标,但以较差的可传递性为代价。总体上两个表现最高的电位,具有互补的优势和劣势,是Smirnova和Starikov的2021角依赖性潜力(Comp。Mater。Sci。197,110581)和2019 Wimmer等人的嵌入式原子能方法(J. Nucl。Mater。532,152055)。通过机器学习算法训练的所有潜力被证明比可用的简单和计算更快的电位具有较低的总体准确性和更低的可传递性。点缺陷结构和能量是观察到最大差异和最低精度的地方。我们创建了地图,可以帮助建模者选择最合适的特定应用潜力,这可能有助于确定未来潜力的改善领域。

Tens of Zr inter-atomic potentials (force fields) have been developed to enable atomic-scale simulations of Zr alloys. These can provide critical insight in the in-reactor behaviour of nuclear fuel cladding and structural components exposed, but the results are strongly sensitive to the choice of potential. We provide a comprehensive comparison of 13 popular Zr potentials, and assess their ability to reproduce key physical, mechanical, structural and thermodynamic properties of Zr. We assess the lattice parameters, thermal expansion, melting point, volume-energy response, allotropic phase stability, elastic properties, and point defect energies, and compare them to experimental and ab-initio values. No potential was found to outperform all others on all aspects, but for every metric considered here, at least one potential was found to provide reliable results. Older embedded-atom method (EAM) potentials tend to excel in 2-3 metrics each, but at the cost of poorer transferability. The two highest-performing potentials overall, with complementary strengths and weaknesses, were the 2021 angular-dependent potential of Smirnova and Starikov (Comp. Mater. Sci. 197, 110581) and the 2019 embedded-atom method potential of Wimmer et al (J. Nucl. Mater. 532, 152055). All potentials trained through machine learning algorithms proved to have lower overall accuracy, and less transferability, than simpler and computationally faster potentials available. Point defect structures and energies is where the greatest divergence and least accuracy is observed. We created maps that will help modellers select the most suitable potential for a specific application, and which may help identify areas of improvement in future potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源