论文标题
关于Priestley空间高空空间的评论
Remarks on Hyperspaces for Priestley Spaces
论文作者
论文摘要
石材空间的越野空间在模态逻辑方法中起着重要作用。当将其推广到积极的模态逻辑时,会基于各种拓扑结构的各种相关的超空间结构,以拓普利斯利空间和机制,以拓扑封闭的集合。许多作者认为Priestley空间的超空间及其在煤层逻辑上的应用方法中的应用。已经采用了类别理论,无点拓扑和Priestley二元性的技术的混合。我们的目的是为这一研究领域提供一种统一的方法,仅依靠对Priestley二元性的基本熟悉度和相关的分布晶格构造。
The Vietoris space of a Stone space plays an important role in the coalgebraic approach to modal logic. When generalizing this to positive modal logic, there is a variety of relevant hyperspace constructions based on various topologies on a Priestley space and mechanisms to topologize the hyperspace of closed sets. A number of authors considered hyperspaces of Priestley spaces and their application to the coalgebraic approach to positive modal logic. A mixture of techniques from category theory, pointfree topology, and Priestley duality have been employed. Our aim is to provide a unifying approach to this area of research relying only on a basic familiarity with Priestley duality and related free constructions of distributive lattices.