论文标题

自动合成神经元的复发神经网

Automatic Synthesis of Neurons for Recurrent Neural Nets

论文作者

Olsson, Roland, Tran, Chau, Magnusson, Lars

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a new class of neurons, ARNs, which give a cross entropy on test data that is up to three times lower than the one achieved by carefully optimized LSTM neurons. The explanations for the huge improvements that often are achieved are elaborate skip connections through time, up to four internal memory states per neuron and a number of novel activation functions including small quadratic forms. The new neurons were generated using automatic programming and are formulated as pure functional programs that easily can be transformed. We present experimental results for eight datasets and found excellent improvements for seven of them, but LSTM remained the best for one dataset. The results are so promising that automatic programming to generate new neurons should become part of the standard operating procedure for any machine learning practitioner who works on time series data such as sensor signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源