论文标题
部分可观测时空混沌系统的无模型预测
Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes
论文作者
论文摘要
大脑的结构连接组支持神经元元素之间的信号传播,从而塑造了可以作为功能连通性捕获的多种共激活模式。尽管结构和功能之间的联系仍然是一个持续的挑战,但普遍的假设是结构功能关系本身可以沿宏观功能梯度逐渐解耦,该梯度跨越了跨模式区域。但是,该假设受到可能忽略必要信号机制的基础模型的强烈限制。在这里,我们将结构连接组转换为管理频率特异性扩散模式的一组正交本本特征,并表明在不同的信号传导机制下,区域结构功能关系明显变化。具体而言,被认为足以捕获功能网络的本质的低频特征模式对跨模量区域的功能连通性重建几乎没有任何贡献,从而导致沿Un-Imopal-transmodal-transmodal梯度的结构函数解耦。相反,由于它们与嘈杂和随机的动态模式的关联,通常在关注外围的高频特征模式极大地有助于跨模式区域的功能连通性预测,从而诱导了从单型号与跨模态区域逐渐收敛的结构 - 结构 - 函数函数关系。尽管高频特征模式中的信息较弱且分散,但在单峰区域有效地增强了35%的结构 - 功能对应关系,而在跨模量中则有效地提高了56%。总的来说,我们的发现表明,跨模式区域的结构功能差异可能不是大脑组织的内在特性,但可以通过多重和区域专业的信号传导机制来缩小。
The brain's structural connectome supports signal propagation between neuronal elements, shaping diverse coactivation patterns that can be captured as functional connectivity. While the link between structure and function remains an ongoing challenge, the prevailing hypothesis is that the structure-function relationship may itself be gradually decoupled along a macroscale functional gradient spanning unimodal to transmodal regions. However, this hypothesis is strongly constrained by the underlying models which may neglect requisite signaling mechanisms. Here, we transform the structural connectome into a set of orthogonal eigenmodes governing frequency-specific diffusion patterns and show that regional structure-function relationships vary markedly under different signaling mechanisms. Specifically, low-frequency eigenmodes, which are considered sufficient to capture the essence of the functional network, contribute little to functional connectivity reconstruction in transmodal regions, resulting in structure-function decoupling along the unimodal-transmodal gradient. In contrast, high-frequency eigenmodes, which are usually on the periphery of attention due to their association with noisy and random dynamical patterns, contribute significantly to functional connectivity prediction in transmodal regions, inducing gradually convergent structure-function relationships from unimodal to transmodal regions. Although the information in high-frequency eigenmodes is weak and scattered, it effectively enhances the structure-function correspondence by 35% in unimodal regions and 56% in transmodal regions. Altogether, our findings suggest that the structure-function divergence in transmodal areas may not be an intrinsic property of brain organization, but can be narrowed through multiplexed and regionally specialized signaling mechanisms.