论文标题
基于喷气式添加剂制造的学习与控制策略
A Learn-and-Control Strategy for Jet-Based Additive Manufacturing
论文作者
论文摘要
在本文中,我们基于物理引导的经常性神经网络(RNN)模型为基于JET的添加剂制造(AM)开发了一个预测性几何控制框架。由于其物理上可以解释的结构,该模型的参数是通过使用来自少数层的输入输出数据来训练网络通过反向传播来获得的。此外,我们证明该模型可以双重表达,以使得(每个层的)零件的层液滴输入模式现在成为通过后传播学习的网络参数。该方法适用于前馈预测控制,其中综合了从以前的数据脱机网络参数,并且合成了所有要打印的层的控制输入模式。然后显示足够的预测控制器稳定性条件。此外,我们设计了一种算法,用于有效地实现反馈预测控制,其中网络参数和输入模式(对于后退的地平线)在线学习而没有添加的计算时间。在实验中显示了前馈控制方案,以将RMS参考跟踪误差提高30%以上。我们还通过实验表明,在线学习和反馈控制可以补偿过程不确定性。
In this paper, we develop a predictive geometry control framework for jet-based additive manufacturing (AM) based on a physics-guided recurrent neural network (RNN) model. Because of its physically interpretable architecture, the model's parameters are obtained by training the network through back propagation using input-output data from a small number of layers. Moreover, we demonstrate that the model can be dually expressed such that the layer droplet input pattern for (each layer of) the part to be fabricated now becomes the network parameter to be learned by back-propagation. This approach is applied for feedforward predictive control in which the network parameters are learned offline from previous data and the control input pattern for all layers to be printed is synthesized. Sufficient conditions for the predictive controller's stability are then shown. Furthermore, we design an algorithm for efficiently implementing feedback predictive control in which the network parameters and input patterns (for the receding horizon) are learned online with no added lead time for computation. The feedforward control scheme is shown experimentally to improve the RMS reference tracking error by more than 30% over the state of the art. We also experimentally demonstrate that process uncertainties are compensated by the online learning and feedback control.