论文标题

G2L:一种生成伪标签的几何方法,可以改善转移学习

G2L: A Geometric Approach for Generating Pseudo-labels that Improve Transfer Learning

论文作者

Kender, John R., Bhattacharjee, Bishwaranjan, Dube, Parijat, Belgodere, Brian

论文摘要

转移学习是一种深入学习的技术,可以改善当人类通知标签昂贵且有限时学习的问题。代替此类标签,它使用先前训练的权重作为训练新目标数据集的基本模型的初始权重。我们演示了一种新颖但通用的技术,用于自动创建此类源模型。我们根据高尺寸的几何形状(Cayley-Mengenter officions of High demensions of High demensions of High demensions)的经典结果,生成伪标签。这种G2L(``标签的几何图形'')方法通过贪婪的Hypervolume含量计算来逐步构建伪标记。我们证明了该方法相对于预期准确性是可调节的,可以通过源和目标之间的数据集相似性(差异)的信息理论度量来预测。 280个实验的结果表明,这种机械技术生成的基本模型与在广泛的人类注销的Imagenet1k标签上训练的模型的基线相比具有相似或更好的可传递性,从而产生了0.43 \%的总体误差降低,并且在5个Divergent数据集中测试的5个误差降低。

Transfer learning is a deep-learning technique that ameliorates the problem of learning when human-annotated labels are expensive and limited. In place of such labels, it uses instead the previously trained weights from a well-chosen source model as the initial weights for the training of a base model for a new target dataset. We demonstrate a novel but general technique for automatically creating such source models. We generate pseudo-labels according to an efficient and extensible algorithm that is based on a classical result from the geometry of high dimensions, the Cayley-Menger determinant. This G2L (``geometry to label'') method incrementally builds up pseudo-labels using a greedy computation of hypervolume content. We demonstrate that the method is tunable with respect to expected accuracy, which can be forecast by an information-theoretic measure of dataset similarity (divergence) between source and target. The results of 280 experiments show that this mechanical technique generates base models that have similar or better transferability compared to a baseline of models trained on extensively human-annotated ImageNet1K labels, yielding an overall error decrease of 0.43\%, and an error decrease in 4 out of 5 divergent datasets tested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源