论文标题

某些结果是关于中等偏差的概率

Some results on probabilities of moderate deviations

论文作者

Li, Deli, Miao, Yu, Qi, Yongcheng

论文摘要

令$ \ {x,x_ {n}; n \ geq 1 \} $是i.i.d的序列。具有$ \ mathbb {e} x^{2} <\ infty $的非脱位实价随机变量。令$ s_ {n} = \ sum_ {i = 1}^{n} x_ {i} $,$ n \ geq 1 $。令$ g(\ cdot):〜[0,\ infty)\ rightArrow [0,\ infty)$是一种不定期变化的功能,使用索引$ρ\ geq 0 $和$ \ lim_ {t \ rightArrow \ rightArrow \ rightarrow \ infty \ infty} g(t)g(t)= \ infty $。令$μ= \ mathbb {e} x $和$σ^{2} = \ mathbb {e}(x -μ)^{2} $。在本文中,在规模$ g(\ log n)$上,我们获得了精确的渐近估计值,以$ \ displaystyle \ log \ log \ mathbb {p} \ left(s_ {n}-nμ> x \ x \ sqrt { \ Mathbb {p} \ left(s_ {n} - nμ<-x \ sqrt {ng(\ log n)} \ right)$,和$ \ displayStyle \ log \ log \ log \ log \ mathbb {p} \ left( \ right)$ for hast $ x> 0 $。与文献中已知的结果不同,本文确定的中等偏差结果取决于$ x $的尾巴分布的方差和渐近行为。

Let $\{X, X_{n}; n \geq 1\}$ be a sequence of i.i.d. non-degenerate real-valued random variables with $\mathbb{E}X^{2} < \infty$. Let $S_{n} = \sum_{i=1}^{n} X_{i}$, $n \geq 1$. Let $g(\cdot): ~[0, \infty) \rightarrow [0, \infty)$ be a nondecreasing regularly varying function with index $ρ\geq 0$ and $\lim_{t \rightarrow \infty} g(t) = \infty$. Let $μ= \mathbb{E}X$ and $σ^{2} = \mathbb{E}(X - μ)^{2}$. In this paper, on the scale $g(\log n)$, we obtain precise asymptotic estimates for the probabilities of moderate deviations of the form $\displaystyle \log \mathbb{P}\left(S_{n} - n μ> x \sqrt{ng(\log n)} \right)$, $\displaystyle \log \mathbb{P}\left(S_{n} - n μ< -x \sqrt{ng(\log n)} \right)$, and $\displaystyle \log \mathbb{P}\left(\left|S_{n} - n μ\right| > x \sqrt{ng(\log n)} \right)$ for all $x > 0$. Unlike those known results in the literature, the moderate deviation results established in this paper depend on both the variance and the asymptotic behavior of the tail distribution of $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源