论文标题
Varifold Canham-Helfrich流量的一般最小化运动
Generalized Minimizing Movements for the varifold Canham-Helfrich flow
论文作者
论文摘要
通过广泛的最小化运动方法来解决Canham-Helfrich功能的梯度流。我们证明了Varifolds以及上和下直径边界的Wasserstein空间中存在溶液的存在。在更常规的乘以$ c^{1,1} $表面的设置中,我们为Canham-Helfrich Energy提供了Li-Yau型估算值,并证明沿进化的多重性保存。
The gradient flow of the Canham-Helfrich functional is tackled via the Generalized Minimizing Movements approach. We prove the existence of solutions in Wasserstein spaces of varifolds, as well as upper and lower diameter bounds. In the more regular setting of multiply covered $C^{1,1}$ surfaces, we provide a Li-Yau-type estimate for the Canham-Helfrich energy and prove the conservation of multiplicity along the evolution.