论文标题
在弱透镜响应功能上
On Weak Lensing Response Functions
论文作者
论文摘要
我们介绍了响应函数(RFS)方法,以在单独的宇宙形式主义背景下对弱透镜统计数据进行建模。 RF的数值结果均针对各种半分析模型,包括扰动模型和光晕模型的变体。这些结果将综合双光谱(IB)和Trisectrum的最新研究扩展到了任意顺序。我们发现,由于视线(LOS)投影效应,RF的表达式与相同顺序的挤压相关函数并不相同。我们使用球形傅立叶 - 贝斯(SFB)形式主义在三维(3D)中计算RF,该形式提供了一种自然框架,用于合并光度红移,并将这些表达式与层析成像和预测的统计数据联系起来。我们将$ k $ - cut功率谱的概念推广到$ k $ - cut响应功能。除了高阶光谱的响应函数外,我们还定义了它们在真实空间中的对应物,因为它们从具有低天空覆盖和非平凡的调查边界的调查中更易于估计。
We introduce the response function (RFs) approach to model the weak lensing statistics in the context of separate universe formalism. Numerical results for the RFs are presented for various semi-analytical models that include perturbative modelling and variants of halo models. These results extend the recent studies of the Integrated Bispectrum (IB) and Trispectrum to arbitrary order. We find that due to the line-of-sight (los) projection effects, the expressions for RFs are not identical to the squeezed correlation functions of the same order. We compute the RFs in three-dimensions (3D) using the spherical Fourier-Bessel (sFB) formalism which provides a natural framework for incorporating photometric redshifts, and relate these expressions to tomographic and projected statistics. We generalise the concept of $k$-cut power spectrum to $k$-cut response functions. In addition to the response function for high-order spectra, we also define their counterparts in real space, since they are easier to estimate from surveys with low sky-coverage and non-trivial survey boundaries.