论文标题
通过渐近均质化确定超材料的广义热力学参数
Determining parameters in generalized thermomechanics for metamaterials by means of asymptotic homogenization
论文作者
论文摘要
制造方法的进步可以通过量身定制的微观结构来设计所谓的超材料。微观结构会影响长度尺度内的材料响应,在此我们使用广义热力学对此行为进行建模。应变梯度理论被用作高阶理论,其热力学建模为一阶理论。为异构材料开发多物理模型确实是一个挑战,即使是广义热力学中的``最简单''模型都会导致数十个参数。我们通过使用给定的微观结构来开发一个计算模型,该模型以周期域建模,并通过渐近均质化来数值计算所有参数。有限元方法(FEM)借助开源代码(Fenics)。在模型问题中,空隙的对称和随机分布的一些示例验证了该方法,并提供了一个示例,我们需要在哪个长度尺度上考虑复合材料中的广义热鸟类。
Advancement in manufacturing methods enable designing so called metamaterials with a tailor-made microstructure. Microstructure affects materials response within a length-scale, where we model this behavior by using the generalized thermomechanics. Strain gradient theory is employed as a higher-order theory with thermodynamics modeled as a first-order theory. Developing multiphysics models for heterogeneous materials is indeed a challenge and even this ``simplest'' model in generalized thermomechanics causes dozens of parameters to be determined. We develop a computational model by using a given microstructure, modeled as a periodic domain, and numerically calculate all parameters by means of asymptotic homogenization. Finite element method (FEM) is employed with the aid of open-source codes (FEniCS). Some example with symmetric and random distribution of voids in a model problem verifies the method and provides an example at which length-scale we need to consider generalized thermoeleasticity in composite materials.