论文标题

使用两流时空融合网络对婴儿的一般运动的自动分类

Automated Classification of General Movements in Infants Using a Two-stream Spatiotemporal Fusion Network

论文作者

Hashimoto, Yuki, Furui, Akira, Shimatani, Koji, Casadio, Maura, Moretti, Paolo, Morasso, Pietro, Tsuji, Toshio

论文摘要

对婴儿的一般运动(GM)的评估是早期诊断神经发育障碍的有用工具。但是,其在临床实践中的评估依赖于专家的视觉检查,并且热切期待自动解决方案。最近,基于视频的GMS分类引起了人们的关注,但是这种方法将受到无关信息的强烈影响,例如视频中的背景混乱。此外,为了可靠性,有必要在GMS期间正确提取婴儿的时空特征。在这项研究中,我们提出了一种自动GMS分类方法,该方法由预处理网络组成,该网络从GMS视频中删除不必要的背景信息并调整婴儿的身体位置,以及基于两流结构的随后的运动分类网络。所提出的方法可以有效地提取GMS分类的基本时空特征,同时防止过度拟合与不同记录环境无关的信息。我们使用从100位婴儿获得的视频验证了提出的方法。实验结果表明,所提出的方法的表现优于几个基线模型和现有方法。

The assessment of general movements (GMs) in infants is a useful tool in the early diagnosis of neurodevelopmental disorders. However, its evaluation in clinical practice relies on visual inspection by experts, and an automated solution is eagerly awaited. Recently, video-based GMs classification has attracted attention, but this approach would be strongly affected by irrelevant information, such as background clutter in the video. Furthermore, for reliability, it is necessary to properly extract the spatiotemporal features of infants during GMs. In this study, we propose an automated GMs classification method, which consists of preprocessing networks that remove unnecessary background information from GMs videos and adjust the infant's body position, and a subsequent motion classification network based on a two-stream structure. The proposed method can efficiently extract the essential spatiotemporal features for GMs classification while preventing overfitting to irrelevant information for different recording environments. We validated the proposed method using videos obtained from 100 infants. The experimental results demonstrate that the proposed method outperforms several baseline models and the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源