论文标题

分解神经网络的知识

Factorizing Knowledge in Neural Networks

论文作者

Yang, Xingyi, Ye, Jingwen, Wang, Xinchao

论文摘要

在本文中,我们探索了一项新颖而雄心勃勃的知识转移任务,称为知识分解〜(KF)。 KF的核心思想在于知识的模块化和组装性:给定验证的网络模型作为输入,KF的目标是将其分解为多个因素网络,每个网络仅处理专用任务并维护从源网络中分解的任务特定于任务知识。此类因素网络是由任务划分的,可以直接组装,而无需进行任何微调,以产生更有能力的组合任务网络。换句话说,因子网络用作像乐高积木一样的构建块,使我们能够以插件的方式构建自定义的网络。具体而言,每个因素网络都包含两个模块,这是一个通用知识模块,该模块与所有因素网络共享,并由所有因素网络共享,以及一个专门针对因子网络本身的任务特定模块。我们介绍了一个信息理论目标,即Infomax-Bottleneck〜(IMB),以通过优化学习表示和输入之间的相互信息来执行KF。各种基准的实验表明,衍生因子网络不仅对专用任务,而且在解开范围内产生令人满意的表演,同时享有更好的解释性和模块化。此外,学到的公共知识表示形式在转移学习方面带来了令人印象深刻的结果。我们的代码可在https://github.com/adamdad/knowledgefactor上找到。

In this paper, we explore a novel and ambitious knowledge-transfer task, termed Knowledge Factorization~(KF). The core idea of KF lies in the modularization and assemblability of knowledge: given a pretrained network model as input, KF aims to decompose it into several factor networks, each of which handles only a dedicated task and maintains task-specific knowledge factorized from the source network. Such factor networks are task-wise disentangled and can be directly assembled, without any fine-tuning, to produce the more competent combined-task networks. In other words, the factor networks serve as Lego-brick-like building blocks, allowing us to construct customized networks in a plug-and-play manner. Specifically, each factor network comprises two modules, a common-knowledge module that is task-agnostic and shared by all factor networks, alongside with a task-specific module dedicated to the factor network itself. We introduce an information-theoretic objective, InfoMax-Bottleneck~(IMB), to carry out KF by optimizing the mutual information between the learned representations and input. Experiments across various benchmarks demonstrate that, the derived factor networks yield gratifying performances on not only the dedicated tasks but also disentanglement, while enjoying much better interpretability and modularity. Moreover, the learned common-knowledge representations give rise to impressive results on transfer learning. Our code is available at https://github.com/Adamdad/KnowledgeFactor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源