论文标题

对净现值最大化项目调度算法的经验评估

Empirical Evaluation of Project Scheduling Algorithms for Maximization of the Net Present Value

论文作者

Lacerda, Isac M., Schmitz, Eber A., Szwarcfiter, Jayme L., de Freitas, Rosiane

论文摘要

本文介绍了三种项目调度算法的经验性能分析,该算法涉及最大化项目的净现值和无限制资源的净现值。所选算法是文献中最近引用的算法,是:递归搜索(RS),最陡峭的上升方法(SAA)和混合搜索(HS)。这项研究的主要动机是缺乏有关RS,SAA和HS算法的计算复杂性的知识,因为迄今为止的所有研究都显示了分析中的一些差距。此外,迄今为止的经验分析并未考虑到一种算法(HS)使用双重搜索策略,该策略显着改善了算法的性能,而其他算法则没有。为了获得公平的性能比较,我们将双重搜索策略实施到其他两种算法(RS和SAA)中,而新算法称为递归搜索前进(RSFB),并且最陡峭的上升接近前进(SAAFB)。将算法RSFB,SAAFB和HS提交给具有三个不同项目网络抽样特征的阶乘实验。使用广义线性模型(GLM)统计建模技术分析了结果,该技术显示:a)RSFB,SAAFB和HS的一般计算成本; b)作为算法总成本的一部分,重新​​启动搜索的成本; c)算法结果的分布之间的统计学显着差异。

This paper presents an empirical performance analysis of three project scheduling algorithms dealing with maximizing projects' net present value with unrestricted resources. The selected algorithms, being the most recently cited in the literature, are: Recursive Search (RS), Steepest Ascent Approach (SAA) and Hybrid Search (HS). The main motivation for this research is the lack of knowledge about the computational complexities of the RS, SAA, and HS algorithms, since all studies to date show some gaps in the analysis. Furthermore, the empirical analysis performed to date does not consider the fact that one algorithm (HS) uses a dual search strategy, which markedly improved the algorithm's performance, while the others don't. In order to obtain a fair performance comparison, we implemented the dual search strategy into the other two algorithms (RS and SAA), and the new algorithms were called Recursive Search Forward-Backward (RSFB) and Steepest Ascent Approach Forward-Backward (SAAFB). The algorithms RSFB, SAAFB, and HS were submitted to a factorial experiment with three different project network sampling characteristics. The results were analyzed using the Generalized Linear Models (GLM) statistical modeling technique that showed: a) the general computational costs of RSFB, SAAFB, and HS; b) the costs of restarting the search in the spanning tree as part of the total cost of the algorithms; c) and statistically significant differences between the distributions of the algorithms' results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源