论文标题

可访问的数据丰富分布在稳健的机会约束的CVR上

Tractable Data Enriched Distributionally Robust Chance-Constrained CVR

论文作者

Zhang, Qianzhi, Bu, Fankun, Guo, Yi, Wang, Zhaoyu

论文摘要

本文提出了一种具有富含数据的降低的稳健分布的稳健分布,具有富集的基于数据的歧义性的三相分布系统中的基于数据的歧义。分布式可再生能源的渗透不仅带来了清洁能力,而且通过向分配系统引入高度不确定性来挑战CVR的电压调节和节能性能。在大多数情况下,CVR的常规鲁棒优化方法仅提供保守的解决方案。为了更好地考虑负载和PV生成不确定性对分销系统中CVR实施的影响并提供较不保守的解决方案,本文通过可拖动重新制定和数据丰富方法开发了基于数据的DRCC-CVR模型。即使可以通过数据捕获负载和光伏(PV)的不确定性,但智能电表(SMS)和微强调测量单元(PMU)的可用性受成本预算的限制。有限的数据访问可能会妨碍拟议的DRCC-CVR的性能。因此,我们进一步提出了一种数据丰富方法,以从统计学上从低分辨率数据(GPR)和马尔可夫链(MC)模型中从低分辨率数据中恢复高分辨率负载和PV生成数据,该模型可用于为所提出的DRCC-CVR构建基于数据的不确定性分布的基于数据的瞬间歧义集。最后,将非线性功率流量和电压依赖性负载模型和具有基于力矩的歧义集的DRCC重新校正为计算典型,并在美国中西部的真实分配馈线上进行了测试,以验证所提出方法的有效性和鲁棒性。

This paper proposes a tractable distributionally robust chance-constrained conservation voltage reduction (DRCC-CVR) method with enriched data-based ambiguity set in unbalanced three-phase distribution systems. The increasing penetration of distributed renewable energy not only brings clean power but also challenges the voltage regulation and energy-saving performance of CVR by introducing high uncertainties to distribution systems. In most cases, the conventional robust optimization methods for CVR only provide conservative solutions. To better consider the impacts of load and PV generation uncertainties on CVR implementation in distribution systems and provide less conservative solutions, this paper develops a data-based DRCC-CVR model with tractable reformulation and data enrichment method. Even though the uncertainties of load and photovoltaic (PV) can be captured by data, the availability of smart meters (SMs) and micro-phasor measurement units (PMUs) is restricted by cost budget. The limited data access may hinder the performance of the proposed DRCC-CVR. Thus, we further present a data enrichment method to statistically recover the high-resolution load and PV generation data from low-resolution data with Gaussian Process Regression (GPR) and Markov Chain (MC) models, which can be used to construct a data-based moment ambiguity set of uncertainty distributions for the proposed DRCC-CVR. Finally, the nonlinear power flow and voltage dependant load models and DRCC with moment-based ambiguity set are reformulated to be computationally tractable and tested on a real distribution feeder in Midwest U. S. to validate the effectiveness and robustness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源