论文标题
单色集团横向游戏的阈值
Thresholds for the monochromatic clique transversal game
论文作者
论文摘要
我们研究了最近推出的两人组合游戏,即$(a,b)$ - 单色集团横向游戏,由爱丽丝和鲍勃在图形$ g $上玩。正如我们观察到的那样,此游戏等同于$(b,a)$ - 偏见的制造商突破性游戏,在$ g $的集合hypergraph上玩。我们的主要结果涉及最小的整数$ a $ a_1(g)$的阈值偏差$ a_1(g)$,因此,如果她是第一个玩的话,爱丽丝可以在$ g $上赢得$(a,1)$ - 单色clique transerssal游戏。除其他结果外,我们确定图表不相交的$ a_1(g)$的可能值,如果$ g $不含三角形,则证明了$ a_1(g)$的公式,并获得$ a_1的确切值(c_n \,\ square \ square \ square \,c_m)$,$ a_1($ a_1(c_n \ a _1) \,\ square \,p_m)$对于所有可能的对$(n,m)$。
We study a recently introduced two-person combinatorial game, the $(a,b)$-monochromatic clique transversal game which is played by Alice and Bob on a graph $G$. As we observe, this game is equivalent to the $(b,a)$-biased Maker-Breaker game played on the clique-hypergraph of $G$. Our main results concern the threshold bias $a_1(G)$ that is the smallest integer $a$ such that Alice can win in the $(a,1)$-monochromatic clique transversal game on $G$ if she is the first to play. Among other results, we determine the possible values of $a_1(G)$ for the disjoint union of graphs, prove a formula for $a_1(G)$ if $G$ is triangle-free, and obtain the exact values of $a_1(C_n \,\square\, C_m)$, $a_1(C_n \,\square\, P_m)$, and $a_1(P_n \,\square\, P_m)$ for all possible pairs $(n,m)$.