论文标题
集体中微子振荡的捕获离子量子模拟
Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations
论文作者
论文摘要
众所周知,在三种贡献的影响下,极端天体物理环境中的中微子风味发生了变化:真空振荡,与周围物质的相互作用以及由于不同中微子之间的相互作用而引起的集体振荡。后者为运动方程式增加了非线性贡献,使其动态复合物的描述。在这项工作中,我们研究了各种策略,以模拟使用量子计算在两种风味近似中N中微子系统的连贯集体振荡。这是通过使用配对中性分解的,旨在解释了以下事实:在存在中微子 - 中微子术语的情况下,味道hamiltonian提出了一种全面的相互作用,从而使进化的实现取决于Qubit拓扑。 我们分析了由分解引起的践踏误差,表明时间演化的实现的复杂性在多项式上与中缩数的数量缩放,并且可以通过优化量子电路分解和利用全量值连接来降低近期量子设备仿真的噪声。我们发现,使用二阶Trotter-Suzuki公式使用系统大小的栅极复杂性比使用其他分解方法(例如量子信号处理)更好。我们最终在基于被困的量子位上的真实量子设备上介绍了应用程序和算法的结果。
It is well known that the neutrino flavor in extreme astrophysical environments changes under the effect of three contributions: the vacuum oscillation, the interaction with the surrounding matter, and the collective oscillations due to interactions between different neutrinos. The latter adds a non-linear contribution to the equations of motion, making the description of their dynamics complex. In this work we study various strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation. This was achieved by using a pair-neutrino decomposition designed to account for the fact that the flavor Hamiltonian, in the presence of the neutrino-neutrino term, presents an all-to-all interaction that makes the implementation of the evolution dependent on the qubit topology. We analyze the Trotter error caused by the decomposition demonstrating that the complexity of the implementation of time evolution scales polynomially with the number of neutrinos and that the noisy from near-term quantum device simulation can be reduced by optimizing the quantum circuit decomposition and exploiting a full-qubit connectivity. We find that the gate complexity using second order Trotter-Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing. We finally present the application and the results of our algorithm on a real quantum device based on trapped-ions qubits.