论文标题

黑色到白孔弹跳场景中的测量学麻烦

Trouble with geodesics in black-to-white hole bouncing scenarios

论文作者

Hong, Deog Ki, Lin, Wei-Chen, Yeom, Dong-han

论文摘要

通过利用薄壳近似,我们研究了黑洞中径向及时的地球测量学的行为,以质量(DE-)扩增关系弹跳。我们表明,如果白洞质量小于黑洞质量,反之亦然,那些大地测量学会越过过渡表面,反之亦然。也就是说,有界的时间表径向测量学在质量下降方向上更接近事件范围。然后,我们表明,通过沿着质量减小的方向追踪有限数量的弹跳循环,所有有界的径向测量学都可以挤压到拉伸地平线的范围中,而黑洞和白洞仍然很大。那些高度挤压的大地测量学是有问题的,因为它们之间存在普朗克级的蓝光与常规的插入轨迹。我们还讨论了可能的含义和救援。

By utilizing the thin shell approximation, we investigate the behavior of radial timelike geodesics in a black hole to white hole bouncing scenario with a mass (de-)amplification relation. We show that those geodesics lose energy after crossing the transition surface if the white hole mass is less than the black hole mass and vice versa. That is, the bounded timelike radial geodesics become closer to the event horizon in the mass decreasing direction. We then show that by tracing a finite amount of bouncing cycles along the mass decreasing direction, all bounded radial geodesics can be squeezed into the range of the stretched horizon while the black hole and white hole are still massive. Those highly squeezed geodesics are problematic since there exists a Planck-scale blueshift between them and the regular infalling trajectories. We also discuss the possible implication and rescues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源