论文标题
各种贝叶斯推断中的量子优势
Quantum Advantage in Variational Bayes Inference
论文作者
论文摘要
变分贝叶斯(VB)推理算法被广泛用于估计生成统计模型中的参数和未观察到的隐藏变量。该算法是受计算物理中使用的变异方法的启发的 - 即使使用经典技术(例如确定性退火(DA)),也可以轻松地卡在本地最小值中。我们研究了基于非传统量子退火方法的变异贝叶斯(VB)推理算法 - 称为量子退火变异贝叶斯(QAVB)推断 - 并表明QAVB在其经典对应物方面确实具有量子优势。特别是,我们表明,这种更好的性能源于量子力学的关键概念:(i)量子系统的哈密顿量的基态(由给定的变化贝叶斯问题(VB)问题定义)对应于在非常低温下变化自由能的最小化解决方案; (ii)通过与量子退火过程平行的技术可以实现这种基态; (iii)从这种基态开始,可以通过将热水浴温度提高到统一,从而避免在基于古典物理学的VB算法中观察到的自发对称性破坏引入的局部最小值来实现VB问题的最佳解决方案。我们还显示,可以使用$ \ lceil \ log k \ rceil $ Qubits和$ \ Mathcal {O}(k)$操作每个步骤来实现QAVB的更新方程。因此,QAVB可以匹配现有VB算法的时间复杂性,同时提供更高的性能。
Variational Bayes (VB) inference algorithm is used widely to estimate both the parameters and the unobserved hidden variables in generative statistical models. The algorithm -- inspired by variational methods used in computational physics -- is iterative and can get easily stuck in local minima, even when classical techniques, such as deterministic annealing (DA), are used. We study a variational Bayes (VB) inference algorithm based on a non-traditional quantum annealing approach -- referred to as quantum annealing variational Bayes (QAVB) inference -- and show that there is indeed a quantum advantage to QAVB over its classical counterparts. In particular, we show that such better performance is rooted in key concepts from quantum mechanics: (i) the ground state of the Hamiltonian of a quantum system -- defined from the given variational Bayes (VB) problem -- corresponds to an optimal solution for the minimization problem of the variational free energy at very low temperatures; (ii) such a ground state can be achieved by a technique paralleling the quantum annealing process; and (iii) starting from this ground state, the optimal solution to the VB problem can be achieved by increasing the heat bath temperature to unity, and thereby avoiding local minima introduced by spontaneous symmetry breaking observed in classical physics based VB algorithms. We also show that the update equations of QAVB can be potentially implemented using $\lceil \log K \rceil$ qubits and $\mathcal{O} (K)$ operations per step. Thus, QAVB can match the time complexity of existing VB algorithms, while delivering higher performance.