论文标题

有条件的梯度同质法,并应用于半决赛编程

A conditional gradient homotopy method with applications to Semidefinite Programming

论文作者

Dvurechensky, Pavel, Iommazzo, Gabriele, Shtern, Shimrit, Staudigl, Mathias

论文摘要

我们提出了一种新的基于同型的条件梯度方法,用于解决大量简单圆锥约束的凸优化问题。该模板的实例自然出现在半决赛编程问题中,这是组合优化问题的凸松弛。我们的方法是一种双环算法,其中通过自我符合屏障对圆锥约束进行处理,并且内环采用条件梯度算法来近似分析中心路径,而外循环则更新了对时间溶液和同型参数的精度。当面对最先进的SDP求解器时,我们的理论迭代复杂性具有竞争力,这具有廉价的无投影子例程的决定性优势。提供了初步数值实验,以说明该方法的实际性能。

We propose a new homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints. Instances of this template naturally appear in semidefinite programming problems arising as convex relaxations of combinatorial optimization problems. Our method is a double-loop algorithm in which the conic constraint is treated via a self-concordant barrier, and the inner loop employs a conditional gradient algorithm to approximate the analytic central path, while the outer loop updates the accuracy imposed on the temporal solution and the homotopy parameter. Our theoretical iteration complexity is competitive when confronted to state-of-the-art SDP solvers, with the decisive advantage of cheap projection-free subroutines. Preliminary numerical experiments are provided for illustrating the practical performance of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源