论文标题

是什么使肺部段自动重建

What Makes for Automatic Reconstruction of Pulmonary Segments

论文作者

Kuang, Kaiming, Zhang, Li, Li, Jingyu, Li, Hongwei, Chen, Jiajun, Du, Bo, Yang, Jiancheng

论文摘要

3D肺部片段的重建在肺癌的手术治疗计划中起着重要作用,这有助于保存肺功能并有助于确保低复发率。但是,在深度学习时代,肺部段的自动重建仍未得到探索。在本文中,我们研究了是什么使肺部段自动重建。首先,我们在临床和几何上表达了肺部段的解剖学定义,并提出了遵守这些定义的评估指标。其次,我们提出了Impulse(隐式肺部段),这是一种旨在肺部段重建的深层隐式表面模型。通过IMPULSE对肺部段的自动重建是准确的指标,并且具有视觉吸引力。与规范分割方法相比,冲动输出连续预测任意分辨率具有较高的训练效率和更少的参数。最后,我们尝试不同的网络输入,以分析肺部段重建任务中重要的事情。我们的代码可在https://github.com/m3dv/impulse上找到。

3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer, which facilitates preservation of pulmonary function and helps ensure low recurrence rates. However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning. In this paper, we investigate what makes for automatic reconstruction of pulmonary segments. First and foremost, we formulate, clinically and geometrically, the anatomical definitions of pulmonary segments, and propose evaluation metrics adhering to these definitions. Second, we propose ImPulSe (Implicit Pulmonary Segment), a deep implicit surface model designed for pulmonary segment reconstruction. The automatic reconstruction of pulmonary segments by ImPulSe is accurate in metrics and visually appealing. Compared with canonical segmentation methods, ImPulSe outputs continuous predictions of arbitrary resolutions with higher training efficiency and fewer parameters. Lastly, we experiment with different network inputs to analyze what matters in the task of pulmonary segment reconstruction. Our code is available at https://github.com/M3DV/ImPulSe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源