论文标题
多样化的自适应批量搜索:在多个GPU上解决QUBO问题的框架
Diverse Adaptive Bulk Search: a Framework for Solving QUBO Problems on Multiple GPUs
论文作者
论文摘要
二进制二进制优化(QUBO)是一种组合优化,可以找到一个最佳的二进制解矢量,该二进制解矢量最小化了由向量中二进制变量的二进制变量的二元公式定义的能量值。由于许多NP难题可以减少为QUBO问题,因此开发在各种计算平台上运行的QUBO求解器(例如量子设备,ASIC,FPGAS,GPU和光纤)。本文提出了一个称为多种自适应批量搜索(DABS)的框架,该框架有可能找到多种类型的QUBO问题的最佳解决方案。我们的DABS求解器采用了一种基于遗传算法的搜索算法,具有三种不同的策略:多种搜索算法,多个遗传操作和多个解决方案池。在执行求解器的过程中,成功找到了成功找到良好解决方案的搜索算法和遗传操作以获得更好的解决方案。此外,搜索算法在不同的解决方案池之间穿越以找到良好的解决方案。我们已经实施了DABS求解器,以在多个GPU上运行。使用八个NVIDIA A100 GPU的实验评估证实,我们的DABS求解器成功地为三种QUBO问题找到了最佳或潜在的最佳解决方案。
Quadratic Unconstrained Binary Optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. As many NP-hard problems can be reduced to QUBO problems, considerable research has gone into developing QUBO solvers running on various computing platforms such as quantum devices, ASICs, FPGAs, GPUs, and optical fibers. This paper presents a framework called Diverse Adaptive Bulk Search (DABS), which has the potential to find optimal solutions of many types of QUBO problems. Our DABS solver employs a genetic algorithm-based search algorithm featuring three diverse strategies: multiple search algorithms, multiple genetic operations, and multiple solution pools. During the execution of the solver, search algorithms and genetic operations that succeeded in finding good solutions are automatically selected to obtain better solutions. Moreover, search algorithms traverse between different solution pools to find good solutions. We have implemented our DABS solver to run on multiple GPUs. Experimental evaluations using eight NVIDIA A100 GPUs confirm that our DABS solver succeeds in finding optimal or potentially optimal solutions for three types of QUBO problems.