论文标题
多标签学习以通过多目标优化排名
Multi-Label Learning to Rank through Multi-Objective Optimization
论文作者
论文摘要
如今,学习排名(LTR)技术在信息检索系统中无处不在,尤其是在搜索排名应用程序中。通常用于训练排名模型的查询项目相关性标签通常是对人类行为的嘈杂测量,例如产品搜索的产品评级。粗略的测量使地面真理对单个相关标准进行了非唯一的排名。为了解决歧义,希望使用许多相关标准训练模型,从而产生多标签LTR(MLLTR)。此外,它制定了多个目标,这些目标可能同时优化,例如,在产品搜索中,可以根据产品质量和购买可能性来增加收入来培训排名模型。在这项研究中,我们利用了MLLTR问题的多目标优化(MOO)方面,并采用了最近开发的MOO算法来解决它。具体而言,我们建议一个一般框架,可以通过多种方式组合来自标签的信息,以有意义地表征目标之间的权衡。我们的框架允许使用任何基于梯度的MOO算法来解决MLLTR问题。我们在两个公开可用的LTR数据集和一个电子商务数据集上测试了提出的框架,以显示其功效。
Learning to Rank (LTR) technique is ubiquitous in the Information Retrieval system nowadays, especially in the Search Ranking application. The query-item relevance labels typically used to train the ranking model are often noisy measurements of human behavior, e.g., product rating for product search. The coarse measurements make the ground truth ranking non-unique with respect to a single relevance criterion. To resolve ambiguity, it is desirable to train a model using many relevance criteria, giving rise to Multi-Label LTR (MLLTR). Moreover, it formulates multiple goals that may be conflicting yet important to optimize for simultaneously, e.g., in product search, a ranking model can be trained based on product quality and purchase likelihood to increase revenue. In this research, we leverage the Multi-Objective Optimization (MOO) aspect of the MLLTR problem and employ recently developed MOO algorithms to solve it. Specifically, we propose a general framework where the information from labels can be combined in a variety of ways to meaningfully characterize the trade-off among the goals. Our framework allows for any gradient based MOO algorithm to be used for solving the MLLTR problem. We test the proposed framework on two publicly available LTR datasets and one e-commerce dataset to show its efficacy.