论文标题
nextg信号分类的自我监督的RF信号表示学习深度学习
Self-Supervised RF Signal Representation Learning for NextG Signal Classification with Deep Learning
论文作者
论文摘要
深度学习(DL)在无线领域中找到了丰富的应用,以提高频谱意识。通常,DL模型要么是在统计分布后随机初始初始初始初始初始初始初始化,要么以转移学习的形式对来自其他域的任务进行鉴定,而无需考虑无线信号的独特特征。即使只有有限的带有标签的培训数据样本,自我监督学习(SSL)即使只有有限的培训数据样本,也可以从无线电频率(RF)信号本身中学习有用的表示形式。我们提出了一种自我监管的RF信号表示方法,并通过专门制定一组转换以捕获无线信号特征来将其应用于自动调制识别(AMR)任务。我们表明,通过使用SSL学习信号表示,可以显着提高样品效率(实现一定性能所需的标记样品数量)。这转化为大量时间和节省成本。此外,与最先进的DL方法相比,SSL提高了模型精度,并在有限的训练数据可用时保持高精度。
Deep learning (DL) finds rich applications in the wireless domain to improve spectrum awareness. Typically, DL models are either randomly initialized following a statistical distribution or pretrained on tasks from other domains in the form of transfer learning without accounting for the unique characteristics of wireless signals. Self-supervised learning (SSL) enables the learning of useful representations from Radio Frequency (RF) signals themselves even when only limited training data samples with labels are available. We present a self-supervised RF signal representation learning method and apply it to the automatic modulation recognition (AMR) task by specifically formulating a set of transformations to capture the wireless signal characteristics. We show that the sample efficiency (the number of labeled samples needed to achieve a certain performance) of AMR can be significantly increased (almost an order of magnitude) by learning signal representations with SSL. This translates to substantial time and cost savings. Furthermore, SSL increases the model accuracy compared to the state-of-the-art DL methods and maintains high accuracy when limited training data is available.