论文标题

二维二维双WEYL半学

Two-dimensional quadratic double Weyl semimetal

论文作者

Zhao, Xinlei, Ma, Fengjie, Guo, Peng-Jie, Lu, Zhong-Yi

论文摘要

非常规的Weyl半法吸引了对凝结物理学和材料科学的密集研​​究兴趣,但在二维上非常罕见。在这项工作中,基于对称分析和第一原理电子结构计算,我们预测Si/Bi van der waals异质结构是二维非常规二次双WEYL半含量,具有强旋转型耦合(SOC)。尽管由异质结构的C3V双组对称性不受保护,但二维二维双WEYL半学稳定,对于高达6.64%的压缩菌株还是稳定的。该系统随着相期的二维三度退化态,随着相位边界为二维的分离,该系统转化为微不足道的半学。此外,Kane-Mele的紧密结合模型计算表明,二次双Weyl相源自Rashba SoC和接近效率增强的内在SOC之间的竞争。另一方面,通过打破镜子对称性,二次双Weyl半学转换为量子旋转厅绝缘子以及量子谷霍尔霍尔绝缘子相。因此,SI/BI异质结构是研究二维双Weyl半学和其他新型拓扑阶段的外来物理学的绝佳平台。

Unconventional Weyl semimetals have attracted intensive research interest in condensed matter physics and materials science, but they are very rare in two dimensions. In this work, based on symmetry analysis and the first-principles electronic structure calculations, we predict that the Si/Bi van der Waals heterostructure is a two-dimensional unconventional quadratic double Weyl semimetal with strong spin-orbit coupling (SOC). Although unprotected by the C3v double group symmetry of the heterostructure, the two-dimensional quadratic double Weyl semimetal is stable for compressive strains up to 6.64%. The system transforms into a trivial semimetal with further increasing strain, where the phase boundary is a two-dimensional triple degenerate semimetal state. Furthermore, the Kane-Mele tight-binding model calculations show that the quadratic double Weyl phase is derived from the competition between the Rashba SOC and the proximity-effect-enhanced intrinsic SOC. On the other hand, by breaking mirror symmetry, the quadratic double Weyl semimetal transforms into a quantum spin Hall insulator as well as a quantum valley Hall insulator phase. Thus, the Si/Bi heterostructure is an excellent platform for studying the exotic physics of two-dimensional double Weyl semimetal and other novel topological phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源