论文标题
高维的霍夫史塔特蝴蝶在彭罗斯晶格上
Higher-dimensional Hofstadter butterfly on Penrose lattice
论文作者
论文摘要
Quasicrystal现在可以通过以非理性数量和高维原始载体为特征来搜索其特殊结构增强的新型拓扑现象。在这里,我们将拓扑绝缘子的概念扩展到了新兴的局部磁通量(即没有外部磁场),类似于Haldane的蜂窝模型,并将其作为准晶体。 Penrose晶格由两个不同的图块组成,其中瓷砖数量的比例与非理性数字相对应。与周期性的晶格相反,相对于磁通量的能量光谱的周期性不再反映出Penrose晶格中的非理性数量。将BOTT指数计算为拓扑不变的,我们发现拓扑阶段出现在分形能量光谱中,例如Hofstadter Butterfly。更有趣的是,通过将一维的大道磁通量折叠成二维的周期性通量空间,能量光谱的分形结构扩展到更高尺寸,其截面与Hofstadter蝴蝶相对应。
Quasicrystal is now open to search for novel topological phenomena enhanced by its peculiar structure characterized by an irrational number and high-dimensional primitive vectors. Here we extend the concept of a topological insulator with an emerging staggered local magnetic flux (i.e., without external fields), similar to the Haldane's honeycomb model, to the Penrose lattice as a quasicrystal. The Penrose lattice consists of two different tiles, where the ratio of the numbers of tiles corresponds to an irrational number. Contrary to periodic lattices, the periodicity of energy spectrum with respect to the magnetic flux no longer exists reflecting the irrational number in the Penrose lattice. Calculating the Bott index as a topological invariant, we find topological phases appearing in a fractal energy spectrum like the Hofstadter butterfly. More intriguingly, by folding the one-dimensional aperiodic magnetic flux into a two-dimensional periodic flux space, the fractal structure of energy spectrum is extended to higher dimension, whose section corresponds to the Hofstadter butterfly.