论文标题

Vicsek Fractal上的Sobolev空间和庞加莱的不平等现象

Sobolev spaces and Poincaré inequalities on the Vicsek fractal

论文作者

Baudoin, Fabrice, Chen, Li

论文摘要

在本文中,我们证明了Sobolev空间的几种自然方法在Vicsek分形上重合。更确切地说,我们表明,Korevaar-Schoen的度量方法,离散$ p $ edergies的限制的方法以及有线系统上Sobolev空间的限制的方法,所有方法都产生了相同的功能空间,其功能空间具有相同的标准$ p> 1 $。结果,我们证明Sobolev空间形成了真实的插值量表。我们还获得$ l^p $-poincaré的不平等,所有$ p \ ge 1 $的不平等现象。

In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete $p$-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for $p>1$. As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain $L^p$-Poincaré inequalities for all values of $p \ge 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源