论文标题

与通用的阿贝尔品种相关的Frobenius痕迹的分布的界限

Bounds for the distribution of the Frobenius traces associated to a generic abelian variety

论文作者

Cojocaru, Alina Carmen, Wang, Tian

论文摘要

令$ g \ geq 1 $为整数,让$ a $为$ \ mathbb {q} $和dimension $ g $定义的Abelian品种。假设,对于每个足够大的prime $ \ ell $,$ a $ a $的剩余模型$ \ ell $ galois表示形式是同构对$ \ text {gsp} _ {2G} _ {2G}(\ m athbb {z}/\ ell \ ell \ ell \ mathbb {z})$。对于整数$ t $和一个正实数$ x $,用$π_A(x,t)$表示Primes $ p \ leq x $的数量,$ a $的质量降低了,为此,Frobenius trace $ a_ {1,p},p}(a)与减少$ a $ a $ modulo $ p $ p $ p $ e equals $ e equals $ equals $ e e e e e e e e e e e e e e equals $ a $ e e a $ a $。假设Dedekind Zeta功能的一般性Riemann假设,我们证明$π_A(x,0)\ ll_a x^{1- \ frac {1} {2G^2+g+1}}}}}}}}}}}}}/(\ log x) t)\ ll_a x^{1- \ frac {1} {2g^2+g+2}}}}/(\ log x)^{1- \ frac {2} {2G^2+g+2}} $如果$ t \ neq 0 $。根据上述假设,我们还证明了一组普特$ p $满足$ | a_ {1,p}(a)|> p^{\ frac {\ frac {1} {2g^2+g+1}}}/(\ log p)/(\ log p)假设除了对Dedekind Zeta功能的普遍假设,Artin的Holomorphy猜想以及对Artin L功能的跨相关性猜想之外,我们还证明了$π_A(x,0)\ ll_a x^{1- \ frac {1- \ frac {1} {1} {1} {g+1} {g+1}}}} x)^{1- \ frac {4} {g+1}} $和那个$π_A(x,x,t)\ ll_a x^{1- \ frac {1} {g+2}}}}}/(\ log x)密度一组Primes $ p $满足$ | a_ {1,p}(a)|> p^{\ frac {1} {g+2} - \ \ varepsilon} $,用于任何固定的$ \ varepsilon> 0 $。这些目前是$π_A(x,t)$的最著名的有条件上限,也是$ | a_ {1,p}(a)| $,对于大多数Primes $ p $的最著名有条件下限。

Let $g \geq 1$ be an integer and let $A$ be an abelian variety defined over $\mathbb{Q}$ and of dimension $g$. Assume that, for each sufficiently large prime $\ell$, the image of the residual modulo $\ell$ Galois representation of $A$ is isomorphic to $\text{GSp}_{2g}(\mathbb{Z}/\ell\mathbb{Z})$. For an integer $t$ and a positive real number $x$, denote by $π_A(x, t)$ the number of primes $p \leq x$, of good reduction for $A$, for which the Frobenius trace $a_{1, p}(A)$ associated to the reduction of $A$ modulo $p$ equals $t$. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that $π_A(x, 0) \ll_A x^{1-\frac{1}{2g^2+g+1}}/(\log x)^{1-\frac{2}{2g^2+g+1}}$ and that $π_A(x, t) \ll_A x^{1-\frac{1}{2g^2+g+2}}/(\log x)^{1-\frac{2}{2g^2+g+2}}$ if $t \neq 0$. Under the assumptions stated above, we also prove the existence of a density one set of primes $p$ satisfying $|a_{1, p}(A)|> p^{\frac{1}{2g^2+g+1}}/(\log p)^{\varepsilon}$ for any fixed $\varepsilon>0$. Assuming, in addition to the Generalized Riemann Hypothesis for Dedekind zeta functions, Artin's Holomorphy Conjecture and a Pair Correlation Conjecture for Artin L-functions, we prove that $π_A(x, 0) \ll_A x^{1-\frac{1}{g+1}}/(\log x)^{1-\frac{4}{g+1}}$ and that $π_A(x, t) \ll_A x^{1-\frac{1}{g+2}}/(\log x)^{1-\frac{4}{g+2}}$ if $t \neq 0$, and we deduce the existence of a density one set of primes $p$ satisfying $|a_{1, p}(A)|> p^{\frac{1}{g+2}-\varepsilon}$ for any fixed $\varepsilon>0$. These are currently the best known conditional upper bounds for $π_A(x, t)$ and the best known conditional lower bounds for $|a_{1, p}(A)|$, for most primes $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源