论文标题
在正交多项式定义的Riordan组中的三参数家族
A Three-parameter Family Of Involutions In The Riordan Group Defined By Orthogonal Polynomials
论文作者
论文摘要
我们向Riordan Group中的每个Riordan Group元素$(g(x),f(x))$定义如何定义。更普遍地,我们表明,对于Riordan集团中的每个伪内卷$ p $,我们可以定义一个新的互动,以任意元素$(g(x),f(x),f(x))$开始。然后,我们使用此结果表明,由Riordan阵列定义的正交多项式的某些两参数家族可能会导致Riordan组的互动,我们给出了这些互动的明确形式。
We show how to define, for every Riordan group element $(g(x), f(x))$, an involution in the Riordan group. More generally, we show that for every pseudo-involution $P$ in the Riordan group, we can define a new involution beginning with an arbitrary element $(g(x), f(x))$ in the Riordan group. We then use this result to show that certain two-parameter families of orthogonal polynomials defined by a Riordan array can lead to involutions in the Riordan group, and we give an explicit form of these involutions.