论文标题

使用观察数据调整安全监视的顺序测试和系统误差:经验校准和Maxsprt

Adjusting for both sequential testing and systematic error in safety surveillance using observational data: Empirical calibration and MaxSPRT

论文作者

Schuemie, Martijn J., Bu, Fan, Nishimura, Akihiko, Suchard, Marc A.

论文摘要

使用观测医疗保健数据对医疗产品进行批准后安全监视可以帮助确定安全问题,而不是在批准前试验中发现的问题。当依次测试数据时,最大的顺序概率比测试(MAXSPRT)是维持名义类型1误差的常见方法。但是,由于分析的观察性质,True 1型误差仍可能偏离指定的误差。即使在控制已知的混杂因素后,此系统错误也可能会持续存在。在这里,我们建议通过将MaxSprt与经验校准梳理来解决此问题。在经验校准中,我们假定分析中系统误差的不确定性,在实践中通常会忽略不确定性的来源。我们通过依靠一组负面对照来推断系统误差的概率分布:在没有因果关系效应的情况下,暴露结果。以前已证明将此分布整合到我们的测试统计数据中,将1型错误恢复为名义。在这里,我们展示了如何校准MaxSprt中心的临界值。我们使用模拟和实际电子健康记录评估了这种新颖的方法,以2009-2010季节的H1N1疫苗接种为例。结果表明,将经验校准与MaxSPRT结合恢复了名义类型1误差。在我们的现实世界示例中,使用经验校准对系统误差进行调整要比更大的影响,因此,使用MaxSPRT进行顺序测试至关重要。我们建议使用此处描述的方法执行两者。

Post-approval safety surveillance of medical products using observational healthcare data can help identify safety issues beyond those found in pre-approval trials. When testing sequentially as data accrue, maximum sequential probability ratio testing (MaxSPRT) is a common approach to maintaining nominal type 1 error. However, the true type 1 error may still deviate from the specified one because of systematic error due to the observational nature of the analysis. This systematic error may persist even after controlling for known confounders. Here we propose to address this issue by combing MaxSPRT with empirical calibration. In empirical calibration, we assume uncertainty about the systematic error in our analysis, the source of uncertainty commonly overlooked in practice. We infer a probability distribution of systematic error by relying on a large set of negative controls: exposure-outcome where no causal effect is believed to exist. Integrating this distribution into our test statistics has previously been shown to restore type 1 error to nominal. Here we show how we can calibrate the critical value central to MaxSPRT. We evaluate this novel approach using simulations and real electronic health records, using H1N1 vaccinations during the 2009-2010 season as an example. Results show that combining empirical calibration with MaxSPRT restores nominal type 1 error. In our real-world example, adjusting for systematic error using empirical calibration has a larger impact than, and hence is just as essential as, adjusting for sequential testing using MaxSPRT. We recommend performing both, using the method described here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源