论文标题

签名超图的节点域定理

Nodal domain theorem of signed hypergraphs

论文作者

Zhang, Lei, Hou, Yaoping

论文摘要

2001年,戴维斯(Davies),格拉德威尔(Gladwell),莱多德(Leydold)和斯塔德勒(Stadler)证明了普遍的拉普拉斯(Laplacians)本征征的离散淋巴结定理。 2019年,Jost和Mulas将图形的标准化组合拉式操作员概括为签名的超图。在本文中,我们在签名的超图中为归一化组合拉普拉斯操作员建立了节点域定理。我们还获得了强节点域数量的下限估计。

In 2001, Davies, Gladwell, Leydold, and Stadler proved discrete nodal domain theorems for eigenfunctions of generalized Laplacians. In 2019, Jost and Mulas generalized the normalized combinatorial Laplace operator of graphs to signed hypergraphs. In this paper, we establish nodal domain theorems for the normalized combinatorial Laplace operator in signed hypergraphs. We also obtain a lower bound estimates for the number of strong nodal domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源