论文标题
产品域上凯奇 - 里曼方程的均匀估计值
Uniform estimates of the Cauchy-Riemann equation on product domains
论文作者
论文摘要
我们观察到,对于$ c^2 $有限的平面域的产品,可以将$ \ bar \ partial u = f $的均匀估计值的连续性假设降低到有限的假设。这完全回答了Kerzman在1971年提出的原始问题。此外,$ l^p $估计的$ \ bar \ partial $是[1,\ infty] $的所有$ p \ partial $。
We observe that the continuity assumption on $f$ for the uniform estimates of the canonical solution to $\bar\partial u = f$ on products of $C^2$ bounded planar domains in \cite{DPZ} can be reduced to the boundedness assumption. This completely answers the original question raised by Kerzman in 1971. Moreover, the $L^p$ estimates of $\bar\partial$ is obtained for all $p \in [1, \infty]$.