论文标题
杜尔菲方形,对称分区和界限的界限
Durfee squares, symmetric partitions and bounds on Kronecker coefficients
论文作者
论文摘要
我们解决了Kronecker系数上的两个开放问题 对称组的$ g(λ,μ,ν)$。首先,我们证明,对于$λ,μ,ν$,具有固定杜尔菲方形大小的分区,kronecker系数最多地生长。其次,我们证明了最大的kronecker系数$ g(λ,λ,λ)$用于自轭分区$λ$ uperexpornialtial。我们还向明确的特殊情况提供申请。
We resolve two open problems on Kronecker coefficients $g(λ,μ,ν)$ of the symmetric group. First, we prove that for partitions $λ,μ,ν$ with fixed Durfee square size, the Kronecker coefficients grow at most polynomially. Second, we show that the maximal Kronecker coefficients $g(λ,λ,λ)$ for self-conjugate partitions $λ$ grow superexponentially. We also give applications to explicit special cases.